Suppr超能文献

基于信息论并在齿状回中得到验证的稳健一致的模式分离度量。

Robust and consistent measures of pattern separation based on information theory and demonstrated in the dentate gyrus.

机构信息

Computer-Based Modelling in the field of 3R Animal Protection, ICAR3R, Faculty of Medicine, Justus Liebig University, Giessen, Germany.

Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with the Max Planck Society, Frankfurt-am-Main, Germany.

出版信息

PLoS Comput Biol. 2024 Feb 20;20(2):e1010706. doi: 10.1371/journal.pcbi.1010706. eCollection 2024 Feb.

Abstract

Pattern separation is a valuable computational function performed by neuronal circuits, such as the dentate gyrus, where dissimilarity between inputs is increased, reducing noise and increasing the storage capacity of downstream networks. Pattern separation is studied from both in vivo experimental and computational perspectives and, a number of different measures (such as orthogonalisation, decorrelation, or spike train distance) have been applied to quantify the process of pattern separation. However, these are known to give conclusions that can differ qualitatively depending on the choice of measure and the parameters used to calculate it. We here demonstrate that arbitrarily increasing sparsity, a noticeable feature of dentate granule cell firing and one that is believed to be key to pattern separation, typically leads to improved classical measures for pattern separation even, inappropriately, up to the point where almost all information about the inputs is lost. Standard measures therefore both cannot differentiate between pattern separation and pattern destruction, and give results that may depend on arbitrary parameter choices. We propose that techniques from information theory, in particular mutual information, transfer entropy, and redundancy, should be applied to penalise the potential for lost information (often due to increased sparsity) that is neglected by existing measures. We compare five commonly-used measures of pattern separation with three novel techniques based on information theory, showing that the latter can be applied in a principled way and provide a robust and reliable measure for comparing the pattern separation performance of different neurons and networks. We demonstrate our new measures on detailed compartmental models of individual dentate granule cells and a dentate microcircuit, and show how structural changes associated with epilepsy affect pattern separation performance. We also demonstrate how our measures of pattern separation can predict pattern completion accuracy. Overall, our measures solve a widely acknowledged problem in assessing the pattern separation of neural circuits such as the dentate gyrus, as well as the cerebellum and mushroom body. Finally we provide a publicly available toolbox allowing for easy analysis of pattern separation in spike train ensembles.

摘要

模式分离是神经元回路(如齿状回)执行的一项有价值的计算功能,它增加了输入之间的差异性,减少了噪声并提高了下游网络的存储容量。模式分离从体内实验和计算的角度进行了研究,已经应用了许多不同的度量方法(如正交化、去相关或尖峰列车距离)来量化模式分离的过程。然而,这些方法的结论质量可能因所选择的度量方法和用于计算的参数而有所不同。我们在这里证明,任意增加稀疏度(齿状回颗粒细胞放电的显著特征,被认为是模式分离的关键)通常会导致经典的模式分离度量得到改善,即使不适当,直到输入的几乎所有信息都丢失。因此,标准的度量方法既不能区分模式分离和模式破坏,也不能给出可能取决于任意参数选择的结果。我们提出应该应用信息论技术,特别是互信息、传递熵和冗余,来惩罚潜在的信息丢失(通常由于稀疏度增加而导致),这是现有度量方法所忽略的。我们将五种常用的模式分离度量方法与三种基于信息论的新方法进行了比较,结果表明,后者可以以一种有原则的方式应用,并为比较不同神经元和网络的模式分离性能提供一种稳健可靠的度量方法。我们在单个齿状颗粒细胞和齿状微电路的详细室模型上演示了我们的新方法,并展示了与癫痫相关的结构变化如何影响模式分离性能。我们还展示了我们的模式分离度量方法如何预测模式完成的准确性。总的来说,我们的度量方法解决了评估齿状回等神经回路模式分离的一个广泛认可的问题,以及小脑和蘑菇体的问题。最后,我们提供了一个公共可用的工具箱,允许在尖峰列车集合中轻松分析模式分离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b078/10906873/d80c3d8b515c/pcbi.1010706.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验