Suppr超能文献

小鼠胃窦部慢波频率的神经调节

Neural regulation of slow-wave frequency in the murine gastric antrum.

作者信息

Forrest Abigail S, Ordög Tamás, Sanders Kenton M

机构信息

Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA.

出版信息

Am J Physiol Gastrointest Liver Physiol. 2006 Mar;290(3):G486-95. doi: 10.1152/ajpgi.00349.2005. Epub 2005 Sep 15.

Abstract

Gastric peristaltic contractions are driven by electrical slow waves modulated by neural and humoral inputs. Excitatory neural input comes primarily from cholinergic motor neurons, but ACh causes depolarization and chronotropic effects that might disrupt the normal proximal-to-distal spread of gastric slow waves. We used intracellular electrical recording techniques to study cholinergic responses in stomach tissues from wild-type and W/W(V) mice. Electrical field stimulation (5 Hz) enhanced slow-wave frequency. These effects were abolished by atropine and the muscarinic M(3)-receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide. ACh released from nerves did not depolarize antral muscles. At higher rates of stimulation (10 Hz), chronotropic effects were mediated by ACh and a noncholinergic transmitter and blocked by muscarinic antagonists and neurokinin (NK(1) and NK(2))-receptor antagonists. Neostigmine enhanced slow-wave frequency, suggesting that the frequency of antral pacemakers is kept low by efficient metabolism of ACh. Neostigmine had no effect on slow-wave frequency in muscles of W/W(v) mice, which lack intramuscular interstitial cells of Cajal (ICC-IM). These muscles also showed no significant chronotropic response to 5-Hz electrical field stimulation or the cholinergic agonist carbachol. The data suggest that the chronotropic effects of cholinergic nerve stimulation occur via ICC-IM in the murine stomach. The capacity of gastric muscles to metabolize ACh released from enteric motor neurons contributes to the maintenance of the proximal-to-distal slow-wave frequency gradient in the murine stomach. ICC-IM play a critical role in neural regulation of gastric motility, and ICC-IM become the dominant pacemaker cells during sustained cholinergic drive.

摘要

胃蠕动收缩由神经和体液输入调制的电慢波驱动。兴奋性神经输入主要来自胆碱能运动神经元,但乙酰胆碱会引起去极化和变时效应,这可能会扰乱胃慢波从近端到远端的正常传播。我们使用细胞内电记录技术研究野生型和W/W(V)小鼠胃组织中的胆碱能反应。电场刺激(5 Hz)可提高慢波频率。这些效应被阿托品和毒蕈碱M(3)受体拮抗剂4-二苯基乙酰氧基-N-甲基哌啶甲碘化物消除。神经释放的乙酰胆碱不会使胃窦肌肉去极化。在较高刺激频率(10 Hz)下,变时效应由乙酰胆碱和一种非胆碱能递质介导,并被毒蕈碱拮抗剂和神经激肽(NK(1)和NK(2))受体拮抗剂阻断。新斯的明可提高慢波频率,表明胃窦起搏器的频率因乙酰胆碱的有效代谢而保持较低。新斯的明对缺乏肌内 Cajal 间质细胞(ICC-IM)的W/W(v)小鼠肌肉的慢波频率没有影响。这些肌肉对5 Hz电场刺激或胆碱能激动剂卡巴胆碱也没有明显的变时反应。数据表明,胆碱能神经刺激的变时效应通过小鼠胃中的ICC-IM发生。胃肌代谢肠运动神经元释放的乙酰胆碱的能力有助于维持小鼠胃中从近端到远端的慢波频率梯度。ICC-IM在胃运动的神经调节中起关键作用,并且在持续的胆碱能驱动下,ICC-IM成为主要的起搏细胞。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验