Biro Jan C
Homulus Foundation, 88 Howard, #1205, San Francisco, CA 94 105, USA.
Med Hypotheses. 2006;66(1):137-42. doi: 10.1016/j.mehy.2005.07.014. Epub 2005 Sep 15.
Proteins are assumed to contain all the information necessary for unambiguous folding and specific interaction with each other. However, ab initio structure prediction is often not successful because the amino acid sequence itself is simply not sufficient to guide between endless folding possibilities. It seems to be logical to try to find the "missing" information in nucleic acids, in the redundant codon. Statistical analyses of approximately 35K amino acid co-locations in 80 different protein structures indicate the existence of a weak intra-molecular protein-protein interaction code. Co-locating amino acids are preferentially coded by codons which are complementary in reverse orientation to each other at the 1st and 3rd codon positions, but not necessarily at the 2nd. This code, called D-1 X 3/RC-3 X 1, limits the number of preferred amino acid pairs from 20 to 10.3+/-0.8 (SEM, n=20) and emphasizes the importance of "strictly" defined amino acids (those having less synonymous codons). The existence of this code does not by any means violate the known physicochemical rules of protein folding or interaction. It is suggested that the biological source of preferential (specific) amino acid co-locations is the partial complementarity of their codons. This special coding of co-locating amino acids is important to better understanding of some fundamental biochemical processes and observations such as: (a) protein folding; (b) specific and high affinity protein-protein interactions; (c) the role of the wobble bases; (d) the significance of the redundant genetic code; (e) the origin of specific protein-protein interactions. Furthermore it might be useful even in protein design.
蛋白质被认为包含了明确折叠以及相互之间特异性相互作用所需的所有信息。然而,从头开始的结构预测往往并不成功,因为氨基酸序列本身根本不足以在无数种折叠可能性中进行引导。尝试在核酸(即冗余密码子)中寻找“缺失”信息似乎是合乎逻辑的。对80种不同蛋白质结构中约35K个氨基酸共定位的统计分析表明,存在一种弱的分子内蛋白质-蛋白质相互作用密码。共定位的氨基酸优先由在第一和第三密码子位置彼此反向互补的密码子编码,但不一定在第二密码子位置互补。这种密码,称为D-1 X 3/RC-3 X 1,将优选氨基酸对的数量从20个限制到10.3±0.8(标准误,n = 20),并强调了“严格”定义的氨基酸(那些同义密码子较少的氨基酸)的重要性。这种密码的存在绝不违反已知的蛋白质折叠或相互作用的物理化学规则。有人认为,优先(特异性)氨基酸共定位的生物学来源是它们密码子的部分互补性。这种共定位氨基酸的特殊编码对于更好地理解一些基本的生化过程和观察结果很重要,例如:(a)蛋白质折叠;(b)特异性和高亲和力的蛋白质-蛋白质相互作用;(c)摆动碱基的作用;(d)冗余遗传密码的意义;(e)特异性蛋白质-蛋白质相互作用的起源。此外,它甚至可能在蛋白质设计中有用。