Suppr超能文献

双功能酶KatG的过氧化氢酶和过氧化物酶活性之间的相互协同作用通过酶内的电子空穴跳跃来促进。

Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron hole-hopping within the enzyme.

作者信息

Njuma Olive J, Davis Ian, Ndontsa Elizabeth N, Krewall Jessica R, Liu Aimin, Goodwin Douglas C

机构信息

From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312.

the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, and.

出版信息

J Biol Chem. 2017 Nov 10;292(45):18408-18421. doi: 10.1074/jbc.M117.791202. Epub 2017 Sep 27.

Abstract

KatG is a bifunctional, heme-dependent enzyme in the front-line defense of numerous bacterial and fungal pathogens against HO-induced oxidative damage from host immune responses. Contrary to the expectation that catalase and peroxidase activities should be mutually antagonistic, peroxidatic electron donors (PxEDs) enhance KatG catalase activity. Here, we establish the mechanism of synergistic cooperation between these activities. We show that at low pH values KatG can fully convert HO to O and HO only if a PxED is present in the reaction mixture. Stopped-flow spectroscopy results indicated rapid initial rates of HO disproportionation slowing concomitantly with the accumulation of ferryl-like heme states. These states very slowly returned to resting ( ferric) enzyme, indicating that they represented catalase-inactive intermediates. We also show that an active-site tryptophan, Trp-321, participates in off-pathway electron transfer. A W321F variant in which the proximal tryptophan was replaced with a non-oxidizable phenylalanine exhibited higher catalase activity and less accumulation of off-pathway heme intermediates. Finally, rapid freeze-quench EPR experiments indicated that both WT and W321F KatG produce the same methionine-tyrosine-tryptophan (MYW) cofactor radical intermediate at the earliest reaction time points and that Trp-321 is the preferred site of off-catalase protein oxidation in the native enzyme. Of note, PxEDs did not affect the formation of the MYW cofactor radical but could reduce non-productive protein-based radical species that accumulate during reaction with HO Our results suggest that catalase-inactive intermediates accumulate because of off-mechanism oxidation, primarily of Trp-321, and PxEDs stimulate KatG catalase activity by preventing the accumulation of inactive intermediates.

摘要

KatG是一种双功能的、依赖血红素的酶,在众多细菌和真菌病原体抵御宿主免疫反应诱导的HO氧化损伤的一线防御中发挥作用。与过氧化氢酶和过氧化物酶活性应相互拮抗的预期相反,过氧化物供体(PxEDs)可增强KatG过氧化氢酶活性。在此,我们确立了这些活性之间协同合作的机制。我们发现,在低pH值条件下,只有反应混合物中存在PxEDs时,KatG才能将HO完全转化为O和HO。停流光谱结果表明,HO歧化反应的初始速率很快,随后随着类高铁血红素状态的积累而逐渐减慢。这些状态非常缓慢地恢复到静止(铁)酶状态,表明它们代表过氧化氢酶无活性的中间体。我们还表明,活性位点色氨酸Trp-321参与了非主反应途径的电子转移。近端色氨酸被不可氧化的苯丙氨酸取代的W321F变体表现出更高的过氧化氢酶活性,且非主反应途径血红素中间体的积累较少。最后,快速冷冻淬灭EPR实验表明,野生型和W321F KatG在最早的反应时间点都会产生相同的甲硫氨酸-酪氨酸-色氨酸(MYW)辅因子自由基中间体,并且Trp-321是天然酶中过氧化氢酶外蛋白质氧化的首选位点。值得注意的是,PxEDs不影响MYW辅因子自由基的形成,但可以减少与HO反应过程中积累的非生产性蛋白质自由基物种。我们的结果表明,过氧化氢酶无活性的中间体积累是由于非主反应机制的氧化,主要是Trp-321的氧化,而PxEDs通过防止无活性中间体的积累来刺激KatG过氧化氢酶活性。

相似文献

4
Catalase in peroxidase clothing: Interdependent cooperation of two cofactors in the catalytic versatility of KatG.
Arch Biochem Biophys. 2014 Feb 15;544:27-39. doi: 10.1016/j.abb.2013.11.007. Epub 2013 Nov 23.
7
Vital roles of an interhelical insertion in catalase-peroxidase bifunctionality.
Biochem Biophys Res Commun. 2004 Jun 11;318(4):970-6. doi: 10.1016/j.bbrc.2004.04.130.

引用本文的文献

1
Protein-derived cofactors: chemical innovations expanding enzyme catalysis.
Chem Soc Rev. 2025 May 6;54(9):4502-4530. doi: 10.1039/d4cs00981a.
2
Catalase-peroxidase (KatG): a potential frontier in tuberculosis drug development.
Crit Rev Biochem Mol Biol. 2024 Dec;59(6):434-446. doi: 10.1080/10409238.2025.2470630. Epub 2025 Feb 27.
3
Indole N-Linked Hydroperoxyl Adduct of Protein-Derived Cofactor Modulating Catalase-Peroxidase Functions.
Angew Chem Int Ed Engl. 2024 Dec 2;63(49):e202407018. doi: 10.1002/anie.202407018. Epub 2024 Nov 4.
4
Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management.
Biomolecules. 2024 Jun 14;14(6):697. doi: 10.3390/biom14060697.
5
Characterization of a catalase-peroxidase variant (L333V-KatG) identified in an INH-resistant clinical isolate.
Biochem Biophys Rep. 2024 Jan 27;37:101649. doi: 10.1016/j.bbrep.2024.101649. eCollection 2024 Mar.
6
Insights into the Thermodynamics and Kinetics of Amino-Acid Radicals in Proteins.
Annu Rev Biophys. 2022 May 9;51:453-471. doi: 10.1146/annurev-biophys-100521-103031. Epub 2022 Feb 8.
7
Functional and protective hole hopping in metalloenzymes.
Chem Sci. 2021 Sep 27;12(42):13988-14003. doi: 10.1039/d1sc04286f. eCollection 2021 Nov 3.
8
A new regime of heme-dependent aromatic oxygenase superfamily.
Proc Natl Acad Sci U S A. 2021 Oct 26;118(43). doi: 10.1073/pnas.2106561118.
9
The Rv2633c protein of is a non-heme di-iron catalase with a possible role in defenses against oxidative stress.
J Biol Chem. 2018 Feb 2;293(5):1590-1595. doi: 10.1074/jbc.RA117.000421. Epub 2017 Dec 14.

本文引用的文献

2
Interaction with the Redox Cofactor MYW and Functional Role of a Mobile Arginine in Eukaryotic Catalase-Peroxidase.
Biochemistry. 2016 Jun 28;55(25):3528-41. doi: 10.1021/acs.biochem.6b00436. Epub 2016 Jun 16.
3
Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage.
Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10920-5. doi: 10.1073/pnas.1512704112. Epub 2015 Jul 20.
6
An ionizable active-site tryptophan imparts catalase activity to a peroxidase core.
J Am Chem Soc. 2014 May 21;136(20):7249-52. doi: 10.1021/ja502794e. Epub 2014 May 7.
7
Oxidative damage in MauG: implications for the control of high-valent iron species and radical propagation pathways.
Biochemistry. 2013 Dec 31;52(52):9447-55. doi: 10.1021/bi401441h. Epub 2013 Dec 16.
8
Catalase in peroxidase clothing: Interdependent cooperation of two cofactors in the catalytic versatility of KatG.
Arch Biochem Biophys. 2014 Feb 15;544:27-39. doi: 10.1016/j.abb.2013.11.007. Epub 2013 Nov 23.
10
Enhancing the peroxidatic activity of KatG by deletion mutagenesis.
J Inorg Biochem. 2012 Nov;116:106-15. doi: 10.1016/j.jinorgbio.2012.08.002. Epub 2012 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验