Coats Stephen R, Pham Thu-Thao T, Bainbridge Brian W, Reife Robert A, Darveau Richard P
Department of Periodontics, University of Washington School of Dentistry, Seattle 98195, USA.
J Immunol. 2005 Oct 1;175(7):4490-8. doi: 10.4049/jimmunol.175.7.4490.
We have demonstrated previously that tetra-acylated LPS derived from the oral bacterium, Porphyromonas gingivalis, and penta-acylated msbB LPS derived from a mutant strain of Escherichia coli can antagonize the ability of canonical hexa-acylated E. coli LPS to signal through the TLR4 signaling complex in human endothelial cells. Activation of the TLR4 signaling complex requires the coordinated function of LPS binding protein (LBP), CD14, MD-2, and TLR4. To elucidate the specific molecular components that mediate antagonism, we developed a recombinant human TLR4 signaling complex that displayed efficient LPS-dependent antagonism of E. coli LPS in HEK293 cells. Notably, changes in the expression levels of TLR4 in HEK293 cells modulated the efficiency of antagonism by P. gingivalis LPS. Both soluble (s) CD14 and membrane (m) CD14 supported efficient P. gingivalis LPS-dependent and msbB LPS-dependent antagonism of E. coli LPS in the recombinant TLR4 system. When cells expressing TLR4, MD-2, and mCD14 were exposed to LPS in the absence of serum-derived LBP, efficient LPS-dependent antagonism of E. coli LPS was still observed indicating that LPS-dependent antagonism occurs downstream of LBP. Experiments using immunoprecipitates of sCD14 or sMD-2 that had been pre-exposed to agonist and antagonist indicated that LPS-dependent antagonism occurs partially at sCD14 and potently at sMD-2. This study provides novel evidence that expression levels of TLR4 can modulate the efficiency of LPS-dependent antagonism. However, MD-2 represents the principal molecular component that tetra-acylated P. gingivalis LPS and penta-acylated msbB LPS use to antagonize hexa-acylated E. coli LPS at the TLR4 signaling complex.
我们之前已经证明,源自口腔细菌牙龈卟啉单胞菌的四酰化脂多糖(LPS),以及源自大肠杆菌突变株的五酰化msbB LPS,能够拮抗典型的六酰化大肠杆菌LPS在人内皮细胞中通过Toll样受体4(TLR4)信号复合物进行信号传导的能力。TLR4信号复合物的激活需要脂多糖结合蛋白(LBP)、CD14、髓样分化蛋白2(MD-2)和TLR4的协同作用。为了阐明介导拮抗作用的具体分子成分,我们构建了一种重组人TLR4信号复合物,该复合物在人胚肾293(HEK293)细胞中表现出对大肠杆菌LPS高效的LPS依赖性拮抗作用。值得注意的是,HEK293细胞中TLR4表达水平的变化调节了牙龈卟啉单胞菌LPS的拮抗效率。可溶性(s)CD14和膜(m)CD14在重组TLR4系统中均支持牙龈卟啉单胞菌LPS依赖性和msbB LPS依赖性对大肠杆菌LPS的有效拮抗作用。当表达TLR4、MD-2和mCD14的细胞在无血清来源的LBP的情况下暴露于LPS时,仍观察到对大肠杆菌LPS高效的LPS依赖性拮抗作用,这表明LPS依赖性拮抗作用发生在LBP的下游。使用预先暴露于激动剂和拮抗剂的sCD14或sMD-2免疫沉淀物进行的实验表明,LPS依赖性拮抗作用部分发生在sCD14,而在sMD-2处作用强烈。这项研究提供了新的证据,表明TLR4的表达水平可以调节LPS依赖性拮抗作用的效率。然而,MD-2是四酰化牙龈卟啉单胞菌LPS和五酰化msbB LPS在TLR4信号复合物处拮抗六酰化大肠杆菌LPS所利用的主要分子成分。