Suppr超能文献

利用自适应神经模糊推理系统(ANFIS)进行呼吸运动预测。

Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS).

作者信息

Kakar Manish, Nyström Håkan, Aarup Lasse Rye, Nøttrup Trine Jakobi, Olsen Dag Rune

机构信息

Department of Radiation Biology, Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.

出版信息

Phys Med Biol. 2005 Oct 7;50(19):4721-8. doi: 10.1088/0031-9155/50/19/020. Epub 2005 Sep 21.

Abstract

The quality of radiation therapy delivered for treating cancer patients is related to set-up errors and organ motion. Due to the margins needed to ensure adequate target coverage, many breast cancer patients have been shown to develop late side effects such as pneumonitis and cardiac damage. Breathing-adapted radiation therapy offers the potential for precise radiation dose delivery to a moving target and thereby reduces the side effects substantially. However, the basic requirement for breathing-adapted radiation therapy is to track and predict the target as precisely as possible. Recent studies have addressed the problem of organ motion prediction by using different methods including artificial neural network and model based approaches. In this study, we propose to use a hybrid intelligent system called ANFIS (the adaptive neuro fuzzy inference system) for predicting respiratory motion in breast cancer patients. In ANFIS, we combine both the learning capabilities of a neural network and reasoning capabilities of fuzzy logic in order to give enhanced prediction capabilities, as compared to using a single methodology alone. After training ANFIS and checking for prediction accuracy on 11 breast cancer patients, it was found that the RMSE (root-mean-square error) can be reduced to sub-millimetre accuracy over a period of 20 s provided the patient is assisted with coaching. The average RMSE for the un-coached patients was 35% of the respiratory amplitude and for the coached patients 6% of the respiratory amplitude.

摘要

为癌症患者提供的放射治疗质量与摆位误差和器官运动有关。由于需要 margins 以确保足够的靶区覆盖,许多乳腺癌患者已被证明会出现诸如肺炎和心脏损伤等晚期副作用。呼吸适应型放射治疗为向移动靶区精确输送放射剂量提供了可能,从而大幅减少副作用。然而,呼吸适应型放射治疗的基本要求是尽可能精确地跟踪和预测靶区。最近的研究通过使用包括人工神经网络和基于模型的方法等不同方法解决了器官运动预测问题。在本研究中,我们提议使用一种名为自适应神经模糊推理系统(ANFIS)的混合智能系统来预测乳腺癌患者的呼吸运动。在 ANFIS 中,我们将神经网络的学习能力和模糊逻辑的推理能力结合起来,以便与单独使用单一方法相比,提供增强的预测能力。在对 11 名乳腺癌患者训练 ANFIS 并检查预测准确性后,发现如果患者得到指导,在 20 秒的时间段内均方根误差(RMSE)可降低至亚毫米精度。未得到指导的患者的平均 RMSE 为呼吸幅度的 35%,而得到指导的患者为呼吸幅度的 6%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验