Suppr超能文献

基于 LSTM 网络的 X 射线血管造影中患者特定的心肺运动预测。

Patient-specific Cardio-respiratory Motion Prediction in X-ray Angiography using LSTM Networks.

机构信息

Interventional Imaging Lab, Department of software and IT engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, Quebec, Canada H3C 1K3, Canada.

Department of Pediatrics, CHU Sainte-Justine, Montreal, Canada H3T 1C5, Canada.

出版信息

Phys Med Biol. 2023 Jan 5;68(2). doi: 10.1088/1361-6560/acaba8.

Abstract

To develop a novel patient-specific cardio-respiratory motion prediction approach for X-ray angiography time series based on a simple long short-term memory (LSTM) model.The cardio-respiratory motion behavior in an X-ray image sequence was represented as a sequence of 2D affine transformation matrices, which provide the displacement information of contrasted moving objects (arteries and medical devices) in a sequence. The displacement information includes translation, rotation, shearing, and scaling in 2D. A many-to-many LSTM model was developed to predict 2D transformation parameters in matrix form for future frames based on previously generated images. The method was developed with 64 simulated phantom datasets (pediatric and adult patients) using a realistic cardio-respiratory motion simulator (XCAT) and was validated using 10 different patient X-ray angiography sequences.Using this method we achieved less than 1 mm prediction error for complex cardio-respiratory motion prediction. The following mean prediction error values were recorded over all the simulated sequences: 0.39 mm (for both motions), 0.33 mm (for only cardiac motion), and 0.47 mm (for only respiratory motion). The mean prediction error for the patient dataset was 0.58 mm.This study paves the road for a patient-specific cardio-respiratory motion prediction model, which might improve navigation guidance during cardiac interventions.

摘要

为了开发一种基于简单长短期记忆(LSTM)模型的新型用于 X 射线血管造影时间序列的患者特定心肺运动预测方法。X 射线图像序列中的心肺运动行为表示为一系列 2D 仿射变换矩阵,这些矩阵提供了序列中对比移动对象(动脉和医疗器械)的位移信息。位移信息包括 2D 中的平移、旋转、剪切和缩放。开发了一个多对多 LSTM 模型,以基于先前生成的图像预测未来帧中矩阵形式的 2D 变换参数。该方法使用真实的心肺运动模拟器(XCAT)在 64 个模拟的幻影数据集(儿科和成年患者)上进行了开发,并使用 10 个不同的患者 X 射线血管造影序列进行了验证。使用该方法,我们实现了复杂心肺运动预测的小于 1 毫米的预测误差。在所有模拟序列中记录了以下平均预测误差值:0.39 毫米(对于两种运动),0.33 毫米(仅用于心脏运动)和 0.47 毫米(仅用于呼吸运动)。患者数据集的平均预测误差为 0.58 毫米。本研究为患者特定的心肺运动预测模型铺平了道路,这可能会改善心脏介入期间的导航指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdf/10280804/6c15144e397a/nihms-1907073-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验