Schmitt O, Modersitzki J, Heldmann S, Wirtz S, Hömke L, Heide W, Kömpf D, Wree A
Institute of Anatomy, University Rostock, Gertrudenstr. 9, D-18055 Rostock, Germany.
Anat Embryol (Berl). 2005 Dec;210(5-6):387-400. doi: 10.1007/s00429-005-0030-8.
Studies employing functional magnetic resonance imaging have identified the human frontal eye field as being in the anterior and partly in the posterior wall, as well as at the base of the precentral sulcus. Moreover, it is known that the frontal eye field extends rostrally to the superior frontal sulcus. According to Brodmann's cytoarchitectonic map, this region belongs to the dysgranular Brodmann area 6 of the premotor cortex. However, the frontal eye field in non-human primates has been located within the arcuate sulcus in Brodmann area 8, generating considerable debate about where to locate exactly the frontal eye field in humans. Functional studies of the primate frontal eye field have revealed a principal homology of voluntary saccadic control systems in human and old-world monkeys, especially the macaque. But these homologies seem to be contradicted by the reported topographic localization at the cytoarchitectonic level. Therefore, we studied the cytoarchitectonic structure of the posterior bank of the precentral sulcus of a human brain, employing newly developed spatial mapping techniques to provide data about whether or not this region should be considered cytoarchitecturally homogeneous or heterogeneous. We used functional magnetic resonance imaging results, as an initial guide in localizing a region which is activated by saccadic tasks. A maximum of activation was detected around the junction of the superior frontal sulcus and the precentral sulcus extending 1.5 cm along the precentral sulcus in direction of the lateral sulcus. Here, one human brain has been analyzed to obtain preliminary data about the cytoarchitectonical changes of a part of area 6. Statistical analysis of the three-dimensional architectonic data from this region allowed us to identify a zone at the posterior bank, which in other studies has been associated with a functional region that controls pursuit eye movements and performs sensory-to-motor transformations. We found two significant sectors along the ventral part of the posterior bank of the precentral sulcus. The caudal transition region coincides partly with a region that integrates retinal and eye position signals for target location, arm, and axial movements. The second more ventrally located region is attributed to process oral-facial movements. The caudal transition region coincides with our functional magnetic resonance imaging investigation. It was revealed that this region lies at the inferior frontal eye field, where a pronounced activation over a larger region can be stimulated. Currently, more studies are needed to combine functional magnetic resonance imaging data of maximal activation with data from whole histologic brain sections of more individuals and to quantify the variability of this region and its sub-regions by means of a standardized brain atlas.
采用功能磁共振成像的研究已确定人类额叶眼区位于中央前沟前壁的前部及部分后壁以及底部。此外,已知额叶眼区向前延伸至上额沟。根据布罗德曼细胞构筑图,该区域属于运动前皮质的颗粒减少型布罗德曼第6区。然而,非人类灵长类动物的额叶眼区位于布罗德曼第8区的弓形沟内,这引发了关于人类额叶眼区确切位置的大量争论。对灵长类动物额叶眼区的功能研究揭示了人类和旧世界猴(尤其是猕猴)中自主扫视控制系统的主要同源性。但这些同源性似乎与细胞构筑水平上报道的地形定位相矛盾。因此,我们利用新开发的空间映射技术研究了人类大脑中央前沟后壁的细胞构筑结构,以提供关于该区域在细胞构筑上是均匀还是异质的数据。我们将功能磁共振成像结果用作定位由扫视任务激活区域的初步指南。在沿中央前沟向外侧沟方向延伸1.5厘米的上额沟与中央前沟交界处周围检测到最大激活。在此,对一个人类大脑进行了分析,以获取关于第6区一部分细胞构筑变化的初步数据。对该区域三维构筑数据的统计分析使我们能够在中央前沟后壁识别出一个区域,在其他研究中该区域与控制追踪眼球运动并执行感觉-运动转换的功能区域相关联。我们在中央前沟后壁腹侧部分发现了两个明显的区域。尾侧过渡区域部分与一个整合视网膜和眼球位置信号以进行目标定位、手臂和轴向运动的区域重合。第二个更靠腹侧的区域归因于处理口面部运动。尾侧过渡区域与我们的功能磁共振成像研究结果相符。结果表明,该区域位于额下回眼区,在该区域可以刺激更大区域的明显激活。目前,需要更多研究将最大激活的功能磁共振成像数据与更多个体的全组织学脑切片数据相结合,并通过标准化脑图谱对该区域及其子区域的变异性进行量化。