Suppr超能文献

A new algorithm for predicting triplet-triplet energy-transfer activated complex coordinate in terms of accurate potential-energy surfaces.

作者信息

Frutos Luis Manuel, Castaño Obis

机构信息

Departamento de Química Física, Universidad de Alcalá, Madrid, Spain.

出版信息

J Chem Phys. 2005 Sep 8;123(10):104108. doi: 10.1063/1.1993592.

Abstract

The new algorithm presented here allows, for the first time, the determination of the optimal geometrical distortions that an acceptor molecule in the triplet-triplet energy-transfer process undergoes, as well as the dependence of the activation energy of the process on the triplet energy difference of donor and acceptor molecules. This algorithm makes use of the complete potential-energy surfaces (singlet and triplet states), and contrasts with the first-order approximation already published [L. M. Frutos, O. Castano, J. L. Andres, M. Merchan, and A. U. Acuna, J. Chem. Phys. 120, 1208 (2004)] in which an expansion of the potential-energy surfaces was used. This algorithm is gradient based and finds the best trajectory for the acceptor molecule, starting from S(0) ground-state equilibrium geometry, to achieve the maximum variation of the singlet-triplet energy gap with the minimum energy of activation on S(0). Therefore, the algorithm allows the determination of a "reaction path" for the triplet-triplet energy-transfer processes. Also, the algorithm could also serve eventually to find minimum-energy crossing (singlet-triplet) points on the potential-energy surface, which can play an important role in the intersystem crossing process for the acceptor molecules to recover their initial capacity as acceptors. Also addressed is the misleading use of minimum-energy paths in T(1) to describe the energy-transfer process by comparing these results with those obtained using the new algorithm. The implementation of the algorithm is illustrated with different potential-energy surface models and it is discussed in the frame of nonvertical behavior.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验