Benaron David A, Parachikov Ilian H, Cheong Wai-Fung, Friedland Shai, Rubinsky Boris E, Otten David M, Liu Frank W H, Levinson Carl J, Murphy Aileen L, Price John W, Talmi Yair, Weersing James P, Duckworth Joshua L, Hörchner Uwe B, Kermit Eben L
Stanford University School of Medicine, Department of Pediatrics, Division of Neonatal and Developmental Medicine, Palo Alto, California 94305, USA.
J Biomed Opt. 2005 Jul-Aug;10(4):44005. doi: 10.1117/1.1979504.
We develop a clinical visible-light spectroscopy (VLS) tissue oximeter. Unlike currently approved near-infrared spectroscopy (NIRS) or pulse oximetry (SpO2%), VLS relies on locally absorbed, shallow-penetrating visible light (475 to 625 nm) for the monitoring of microvascular hemoglobin oxygen saturation (StO2%), allowing incorporation into therapeutic catheters and probes. A range of probes is developed, including noncontact wands, invasive catheters, and penetrating needles with injection ports. Data are collected from: 1. probes, standards, and reference solutions to optimize each component; 2. ex vivo hemoglobin solutions analyzed for StO2% and pO2 during deoxygenation; and 3. human subject skin and mucosal tissue surfaces. Results show that differential VLS allows extraction of features and minimization of scattering effects, in vitro VLS oximetry reproduces the expected sigmoid hemoglobin binding curve, and in vivo VLS spectroscopy of human tissue allows for real-time monitoring (e.g., gastrointestinal mucosal saturation 69+/-4%, n=804; gastrointestinal tumor saturation 45+/-23%, n=14; and p<0.0001), with reproducible values and small standard deviations (SDs) in normal tissues. FDA approved VLS systems began shipping earlier this year. We conclude that VLS is suitable for the real-time collection of spectroscopic and oximetric data from human tissues, and that a VLS oximeter has application to the monitoring of localized subsurface hemoglobin oxygen saturation in the microvascular tissue spaces of human subjects.
我们开发了一种临床可见光光谱(VLS)组织血氧仪。与目前已获批的近红外光谱(NIRS)或脉搏血氧饱和度仪(SpO2%)不同,VLS依靠局部吸收的浅穿透可见光(475至625纳米)来监测微血管血红蛋白氧饱和度(StO2%),从而能够集成到治疗导管和探头中。我们开发了一系列探头,包括非接触式棒、侵入性导管以及带有注射端口的穿刺针。数据收集自:1. 探头、标准品和参考溶液,以优化每个组件;2. 在脱氧过程中分析StO2%和pO2的离体血红蛋白溶液;3. 人体皮肤和黏膜组织表面。结果表明,差分VLS能够提取特征并最小化散射效应,体外VLS血氧测定法可重现预期的S形血红蛋白结合曲线,人体组织的体内VLS光谱能够进行实时监测(例如,胃肠道黏膜饱和度为69±4%,n = 804;胃肠道肿瘤饱和度为45±23%,n = 14;p<0.0001),正常组织中的值具有可重复性且标准差(SD)较小。美国食品药品监督管理局(FDA)批准的VLS系统已于今年早些时候开始发货。我们得出结论,VLS适用于从人体组织实时收集光谱和血氧测定数据,并且VLS血氧仪可应用于监测人体受试者微血管组织空间中局部皮下血红蛋白氧饱和度。