Xie Jingru, Chen Si, Zhao Liang, Dong Xin
School of Medicine, Shanghai University, Shanghai, 200444, China.
Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Baoshan District, Shanghai, 201908, China.
J Pharm Anal. 2025 Jan;15(1):101155. doi: 10.1016/j.jpha.2024.101155. Epub 2024 Nov 26.
Quantitative structure-retention relationship (QSRR) is an important tool in chromatography. QSRR examines the correlation between molecular structures and their retention behaviors during chromatographic separation. This approach involves developing models for predicting the retention time (RT) of analytes, thereby accelerating method development and facilitating compound identification. In addition, QSRR can be used to study compound retention mechanisms and support drug screening efforts. This review provides a comprehensive analysis of QSRR workflows and applications, with a special focus on the role of artificial intelligence-an area not thoroughly explored in previous reviews. Moreover, we discuss current limitations in RT prediction and propose promising solutions. Overall, this review offers a fresh perspective on future QSRR research, encouraging the development of innovative strategies that enable the diverse applications of QSRR models in chromatographic analysis.
定量结构-保留关系(QSRR)是色谱分析中的一项重要工具。QSRR研究分子结构与其在色谱分离过程中的保留行为之间的相关性。这种方法涉及开发预测分析物保留时间(RT)的模型,从而加速方法开发并便于化合物鉴定。此外,QSRR可用于研究化合物保留机制并支持药物筛选工作。本综述对QSRR工作流程和应用进行了全面分析,特别关注人工智能的作用——这是以往综述中未深入探讨的领域。此外,我们讨论了当前RT预测中的局限性并提出了有前景的解决方案。总体而言,本综述为未来的QSRR研究提供了全新视角,鼓励开发创新策略,使QSRR模型在色谱分析中得到广泛应用。