Suppr超能文献

药物警戒中的数据挖掘:需要一种平衡的视角。

Data mining in pharmacovigilance: the need for a balanced perspective.

作者信息

Hauben Manfred, Patadia Vaishali, Gerrits Charles, Walsh Louisa, Reich Lester

机构信息

Risk Management Strategy, Pfizer Inc, New York, New York 10017, USA.

出版信息

Drug Saf. 2005;28(10):835-42. doi: 10.2165/00002018-200528100-00001.

Abstract

Data mining is receiving considerable attention as a tool for pharmacovigilance and is generating many perspectives on its uses. This paper presents four concepts that have appeared in various professional venues and represent potential sources of misunderstanding and/or entail extended discussions: (i) data mining algorithms are unvalidated; (ii) data mining algorithms allow data miners to objectively screen spontaneous report data; (iii) mathematically more complex Bayesian algorithms are superior to frequentist algorithms; and (iv) data mining algorithms are not just for hypothesis generation. Key points for a balanced perspective are that: (i) validation exercises have been done but lack a gold standard for comparison and are complicated by numerous nuances and pitfalls in the deployment of data mining algorithms. Their performance is likely to be highly situation dependent; (ii) the subjective nature of data mining is often underappreciated; (iii) simpler data mining models can be supplemented with 'clinical shrinkage', preserving sensitivity; and (iv) applications of data mining beyond hypothesis generation are risky, given the limitations of the data. These extended applications tend to 'creep', not pounce, into the public domain, leading to potential overconfidence in their results. Most importantly, in the enthusiasm generated by the promise of data mining tools, users must keep in mind the limitations of the data and the importance of clinical judgment and context, regardless of statistical arithmetic. In conclusion, we agree that contemporary data mining algorithms are promising additions to the pharmacovigilance toolkit, but the level of verification required should be commensurate with the nature and extent of the claimed applications.

摘要

数据挖掘作为药物警戒的一种工具正受到广泛关注,并且其用途引发了诸多观点。本文介绍了在不同专业场合出现的四个概念,这些概念可能会导致误解和/或引发深入讨论:(i)数据挖掘算法未经验证;(ii)数据挖掘算法使数据挖掘人员能够客观地筛选自发报告数据;(iii)数学上更复杂的贝叶斯算法优于频率论算法;(iv)数据挖掘算法不仅仅用于生成假设。秉持平衡观点的关键点在于:(i)已经开展了验证工作,但缺乏用于比较的金标准,并且在数据挖掘算法的部署中存在诸多细微差别和陷阱,使其变得复杂。其性能可能高度依赖具体情况;(ii)数据挖掘的主观性常常未得到充分认识;(iii)更简单的数据挖掘模型可以辅以“临床收缩”,以保持敏感性;(iv)鉴于数据的局限性,数据挖掘在假设生成之外的应用存在风险。这些扩展应用往往是逐渐“渗透”而非突然进入公共领域,从而导致对其结果可能过度自信。最重要的是,在数据挖掘工具带来的热情中,用户必须牢记数据的局限性以及临床判断和背景的重要性,无论统计运算如何。总之,我们认同当代数据挖掘算法是药物警戒工具包中有前景的补充,但所需的验证水平应与所声称应用的性质和范围相称。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验