Schoenfeld Thomas A, Cleland Thomas A
Department of Physiology, Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01655, USA.
Trends Neurosci. 2005 Nov;28(11):620-7. doi: 10.1016/j.tins.2005.09.005. Epub 2005 Sep 21.
Olfactory receptor neurons (ORNs) expressing the same odorant receptor gene share ligand-receptor affinity profiles and converge onto common glomerular targets in the brain. The activation patterns of different ORN populations, evoked by differential binding of odorant molecular moieties, constitute the primary odor representation. However, odorants possess properties other than receptor-binding sites that can contribute to odorant discrimination. Among terrestrial vertebrates, odorant sorptiveness--volatility and water solubility--imposes physicochemical constraints on migration through the nose during inspiration. The non-uniform distributions of ORN populations along the inspiratory axis enable sorptiveness to modify odor representations by affecting the number of molecules reaching different receptors during a sniff. Animals can then modify and analyze odor representation further by the dynamic regulation of sniffing.
表达相同气味受体基因的嗅觉受体神经元(ORN)具有共同的配体-受体亲和力特征,并汇聚到大脑中相同的肾小球靶点上。由气味分子部分的差异结合所诱发的不同ORN群体的激活模式,构成了初级气味表征。然而,气味分子除了具有受体结合位点外,还具有其他特性,这些特性有助于气味辨别。在陆生脊椎动物中,气味吸附性——挥发性和水溶性——对吸气过程中通过鼻腔的迁移施加了物理化学限制。ORN群体沿吸气轴的非均匀分布使吸附性能够通过影响一次嗅闻过程中到达不同受体的分子数量来改变气味表征。然后,动物可以通过对嗅闻的动态调节进一步修改和分析气味表征。