Suppr超能文献

利用基本通量模式分析预测基因工程靶点:四种现有方法综述

Predicting genetic engineering targets with Elementary Flux Mode Analysis: a review of four current methods.

作者信息

Ruckerbauer David E, Jungreuthmayer Christian, Zanghellini Jürgen

机构信息

Austrian Centre of Industrial Biotechnology, Muthgasse 11, A1190 Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.

Austrian Centre of Industrial Biotechnology, Muthgasse 11, A1190 Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.

出版信息

N Biotechnol. 2015 Dec 25;32(6):534-46. doi: 10.1016/j.nbt.2015.03.017. Epub 2015 Apr 24.

Abstract

Elementary flux modes (EFMs) are a well-established tool in metabolic modeling. EFMs are minimal, feasible, steady state pathways through a metabolic network. They are used in various approaches to predict targets for genetic interventions in order to increase production of a molecule of interest via a host cell. Here we give an introduction to the concept of EFMs, present an overview of four methods which use EFMs in order to predict engineering targets and lastly use a toy model and a small-scale metabolic model to demonstrate and compare the capabilities of these methods.

摘要

基本通量模式(Elementary flux modes,EFMs)是代谢建模中一种成熟的工具。EFMs是通过代谢网络的最小、可行的稳态途径。它们被用于各种方法中,以预测基因干预的靶点,从而通过宿主细胞增加目标分子的产量。在此,我们介绍EFMs的概念,概述四种使用EFMs来预测工程靶点的方法,最后使用一个简单模型和一个小规模代谢模型来演示和比较这些方法的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验