Suppr超能文献

StratusOCT与GDx VCC测量视网膜神经纤维层的对比研究,II:青光眼的结构/功能回归分析

Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, II: structure/function regression analysis in glaucoma.

作者信息

Leung Christopher Kai-shun, Chong Kelvin Kam-Long, Chan Wai-man, Yiu Cedric Ka-Fai, Tso Man-yee, Woo Jackson, Tsang Moon-Kwong, Tse Kwok-kay, Yung Wing-ho

机构信息

Department of Ophthalmology, Caritas Medical Centre, Hong Kong, People's Republic of China.

出版信息

Invest Ophthalmol Vis Sci. 2005 Oct;46(10):3702-11. doi: 10.1167/iovs.05-0490.

Abstract

PURPOSE

To evaluate the structure/function relationship between visual field sensitivity and retinal nerve fiber layer (RNFL) thickness measured by StratusOCT (Carl Zeiss Meditec, Inc., Dublin, CA) and GDx VCC (Laser Diagnostic Technologies, Inc., San Diego, CA).

METHODS

Eighty-nine subjects (27 who had healthy eyes, 21 who were glaucoma suspect, 41 who had glaucoma) were enrolled in this cross-sectional study. RNFL thickness was measured using the StratusOCT and the GDx VCC, and visual field (VF) was examined using the Humphrey VF analyzer. The relationship between RNFL thickness and VF sensitivity-expressed in terms of mean deviation (MD) in decibel (dB) scale, unlogged 1/lambert (L), and Advanced Glaucoma Intervention Study (AGIS) and Collaborative Initial Glaucoma Treatment Study (CIGTS) VF scores-were evaluated with linear and nonlinear regression models. Coefficient of determination (R(2)) was calculated, and regression models were compared using the Akaike information criterion and the F test.

RESULTS

In plotting MD against RNFL thickness, curvilinear regression models demonstrated the best fit, whereas linear regression attained the best associations when VF sensitivity was expressed in 1/L. However, when healthy subjects were excluded from the analyses, the second-order polynomial was better than linear regression in describing the relation between 1/L and GDx VCC-measured RNFL thickness. Regression profiles between AGIS/CIGTS VF scores and RNFL thickness were best described in the linear and the first-order inverse models for GDx VCC and StratusOCT RNFL measurements, respectively. In general, StratusOCT RNFL measurements achieved higher associations with visual function in all the respective regression analyses than did GDx VCC.

CONCLUSIONS

Description of structure/function relationships in glaucoma depends on the choice of perimetry scale, the type of RNFL measuring device, and the characteristics of the studied groups. The higher association with visual function in StratusOCT RNFL measurements compared with that in GDx VCC suggested optical coherence tomography might be a better approach for evaluating structure/function relationships. Curvilinear regression profiles found between StratusOCT RNFL thickness and MD/VF scores provide an explanation for those longitudinal observations, showing that VFs with higher AGIS/CIGTS VF scores or worse MD at baseline are at higher risk for deterioration. Regression analysis of the structure/function profile could provide important information in the assessment of the trend and pattern of glaucoma progression.

摘要

目的

评估通过StratusOCT(卡尔·蔡司医疗技术公司,加利福尼亚州都柏林)和GDx VCC(激光诊断技术公司,加利福尼亚州圣地亚哥)测量的视野敏感度与视网膜神经纤维层(RNFL)厚度之间的结构/功能关系。

方法

八十九名受试者(27名健康眼者、21名青光眼疑似患者、41名青光眼患者)参与了这项横断面研究。使用StratusOCT和GDx VCC测量RNFL厚度,并使用Humphrey视野分析仪检查视野(VF)。以分贝(dB)尺度的平均偏差(MD)、未记录的1/朗伯(L)以及高级青光眼干预研究(AGIS)和协作初始青光眼治疗研究(CIGTS)视野评分来表示的RNFL厚度与VF敏感度之间的关系,采用线性和非线性回归模型进行评估。计算决定系数(R²),并使用赤池信息准则和F检验比较回归模型。

结果

在绘制MD与RNFL厚度的关系图时,曲线回归模型显示拟合最佳,而当VF敏感度以1/L表示时,线性回归具有最佳相关性。然而,当从分析中排除健康受试者时,在描述1/L与GDx VCC测量的RNFL厚度之间的关系时,二阶多项式比线性回归更好。对于GDx VCC和StratusOCT RNFL测量,AGIS/CIGTS视野评分与RNFL厚度之间的回归曲线分别在线性和一阶反比模型中得到最佳描述。总体而言,在所有各自的回归分析中,StratusOCT RNFL测量与视觉功能的相关性高于GDx VCC。

结论

青光眼结构/功能关系的描述取决于视野计尺度的选择、RNFL测量设备的类型以及研究组的特征。与GDx VCC相比,StratusOCT RNFL测量与视觉功能的更高相关性表明光学相干断层扫描可能是评估结构/功能关系的更好方法。在StratusOCT RNFL厚度与MD/视野评分之间发现的曲线回归曲线为那些纵向观察结果提供了解释,表明在基线时具有较高AGIS/CIGTS视野评分或较差MD的视野恶化风险更高。结构/功能曲线的回归分析可为评估青光眼进展的趋势和模式提供重要信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验