Jorgenson Lyric A, Sun Mu, O'Connor Michael, Georgieff Michael K
Graduate Program in Neuroscience, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA.
Hippocampus. 2005;15(8):1094-102. doi: 10.1002/hipo.20128.
Late fetal and early postnatal iron deficiency (ID) is a common condition that causes learning and memory impairments in humans while they are iron deficient and following iron repletion. Rodent models of fetal ID demonstrate significant short- and long-term hippocampal structural and biochemical abnormalities that may predispose hippocampal area CA1 to abnormal electrophysiology. Rat pups made iron deficient during the fetal and early postnatal period were assessed for basal synaptic transmission, paired-pulse facilitation (PPF), and long-term potentiation (LTP) in CA1 at postnatal days (P)15 and P30 while iron deficient and at P65 following iron repletion. Our results showed no differences in basal synaptic transmission between iron sufficient and iron deficient pups at P15 or P30, but the ID group did fail to demonstrate the expected developmental increase in synaptic strength by P65 (P < 0.05). Similarly, PPF ratios from iron deficient slices also failed to demonstrate the characteristic developmental changes seen in the iron sufficient group (P < 0.001). Iron deficient slices retained a developmentally immature P15 pattern of LTP expression at P30 and after iron repletion, and LTP expression was lower (P < 0.05) in the iron deficient group at P65. Thus, ID in the fetal and early postnatal period delays or abolishes the developmental maturation of electrophysiological components of synaptic efficacy and plasticity, resulting in abnormalities beyond the period of deficiency. These findings provide a functional corroboration to previous structural and biochemical abnormalities found in the iron deficient rat hippocampus and provide a potential model for learning and memory deficits seen in humans exposed to fetal and early postnatal ID.
胎儿晚期和出生后早期缺铁是一种常见病症,会导致人类在缺铁期间以及补铁后出现学习和记忆障碍。胎儿缺铁的啮齿动物模型显示出明显的海马体短期和长期结构及生化异常,这可能使海马体CA1区易于出现异常电生理。对在胎儿期和出生后早期缺铁的幼鼠,在出生后第(P)15天和第30天缺铁时以及在出生后第65天补铁后,评估其海马体CA1区的基础突触传递、双脉冲易化(PPF)和长时程增强(LTP)。我们的结果显示,在出生后第15天或第30天,铁充足和缺铁幼鼠之间的基础突触传递没有差异,但缺铁组在出生后第65天未能表现出预期的突触强度发育性增加(P<0.05)。同样,缺铁切片的PPF比率也未能表现出铁充足组中所见的特征性发育变化(P<0.001)。缺铁切片在出生后第30天以及补铁后仍保持出生后第15天发育不成熟的LTP表达模式,并且在出生后第65天,缺铁组的LTP表达较低(P<0.05)。因此,胎儿期和出生后早期缺铁会延迟或消除突触效能和可塑性电生理成分的发育成熟,导致在缺铁期之后仍出现异常。这些发现为先前在缺铁大鼠海马体中发现的结构和生化异常提供了功能上的佐证,并为在胎儿期和出生后早期缺铁的人类中所见的学习和记忆缺陷提供了一个潜在模型。