O'Mara S M, Commins S, Anderson M
Department of Psychology, University of Dublin, Trinity College, Ireland.
Hippocampus. 2000;10(4):447-56. doi: 10.1002/1098-1063(2000)10:4<447::AID-HIPO11>3.0.CO;2-2.
This paper reviews investigations of synaptic plasticity in the major, and underexplored, pathway from hippocampal area CA1 to the subiculum. This brain area is the major synaptic relay for the majority of hippocampal area CA1 neurons, making the subiculum the last relay of the hippocampal formation prior to the cortex. The subiculum thus has a very major role in mediating hippocampal-cortical interactions. We demonstrate that the projection from hippocampal area CA1 to the subiculum sustains plasticity on a number of levels. We show that this pathway is capable of undergoing both long-term potentiation (LTP) and paired-pulse facilitation (PPF, a short-term plastic effect). Although we failed to induce long-term depression (LTD) of this pathway with low-frequency stimulation (LFS) and two-pulse stimulation (TPS), both protocols can induce a "late-developing" potentiation of synaptic transmission. We further demonstrate that baseline synaptic transmission can be dissociated from paired-pulse stimulation of the same pathway; we also show that it is possible, using appropriate protocols, to change PPF to paired-pulse depression, thus revealing subtle and previously undescribed mechanisms which regulate short-term synaptic plasticity. Finally, we successfully recorded from individual subicular units in the freely-moving animal, and provide a description of the characteristics of such neurons in a pellet-chasing task. We discuss the implications of these findings in relation to theories of the biological consolidation of memory.
本文综述了从海马体CA1区到下托这一主要但尚未充分探索的通路中的突触可塑性研究。这个脑区是大多数海马体CA1神经元的主要突触中继站,使得下托成为海马结构在投射到皮层之前的最后一个中继站。因此,下托在介导海马体与皮层的相互作用中起着非常重要的作用。我们证明,从海马体CA1区到下托的投射在多个层面上维持可塑性。我们表明,这条通路能够经历长时程增强(LTP)和双脉冲易化(PPF,一种短期可塑性效应)。尽管我们未能通过低频刺激(LFS)和双脉冲刺激(TPS)诱导该通路的长时程抑制(LTD),但这两种方案都能诱导突触传递的“后期发展”增强。我们进一步证明,基线突触传递可以与同一路径的双脉冲刺激分离;我们还表明,使用适当的方案,可以将PPF转变为双脉冲抑制,从而揭示调节短期突触可塑性的微妙且以前未描述的机制。最后,我们成功地在自由活动的动物中记录了单个下托神经元的活动,并描述了在小球追逐任务中此类神经元的特征。我们讨论了这些发现与记忆生物学巩固理论的关系。