Suppr超能文献

Regulation of cortical blood flow by the dorsal raphe nucleus: topographic organization of cerebrovascular regulatory regions.

作者信息

Underwood M D, Bakalian M J, Arango V, Smith R W, Mann J J

机构信息

Laboratories of Neuropharmacology, Western Psychiatric Institute and Clinic, University of Pittsburgh, Pennsylvania 15213.

出版信息

J Cereb Blood Flow Metab. 1992 Jul;12(4):664-73. doi: 10.1038/jcbfm.1992.91.

Abstract

We examined in rat: (1) the time-course and magnitude of change in cortical blood flow (CoBF) following electrical stimulation of the dorsal raphe nucleus (DRN) and (2) whether DRN lesions affect resting CoBF or the cerebrovascular response to CO2. Animals were anesthetized (chloralose), paralyzed, and artificially ventilated. The effect of stimulus frequency (1-200 Hz) and intensity (10-100 microA) on arterial pressure, heart rate, and CoBF was examined; lesions were made electrolytically. CoBF was measured using a laser-Doppler flowmeter with the probe placed extradurally over the parietal sensorimotor cortex. The DRN was computer reconstructed in three dimensions from Nissl stained coronal sections for localization of electrode placements. Brief stimuli (8 s; n = 6) elicited frequency and intensity-dependent increases in arterial pressure, heart rate, and CoBF. Sustained intermittent trains of stimuli of rostral DRN (200 Hz; 1 s on/1 s off; 70 microA) elicited a decrease (85 +/- 12% of baseline; n = 9) in CoBF (p less than 0.05) while stimulation in caudal DRN resulted in increased CBF (126 +/- 13% of baseline; n = 9). Phenylephrine infusion (0.1-1 microgram; i.v.; n = 8) increased arterial pressure and CoBF less than that elicited by brief DRN stimulation (p less than 0.05). DRN lesions did not affect resting CoBF (140 +/- 25 perfusion units (PU) before; 127 +/- 16 PU after DRN lesion; p greater than 0.05, n = 5) or mean arterial pressure (127 +/- 13 before; 120 +/- 11 after); nor did it affect the cerebrovascular response to change in arterial PCO2. Sustained intermittent stimulation of the DRN can evoke either increases or decreases in CoBF depending on the anatomical sublocalization. The DRN does not tonically maintain resting CoBF, nor participate in the cerebrovascular response to change in PCO2.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验