Suppr超能文献

用于改善单次试验脑电图分类的时空频谱滤波器。

Spatio-spectral filters for improving the classification of single trial EEG.

作者信息

Lemm Steven, Blankertz Benjamin, Curio Gabriel, Müller Klaus-Robert

机构信息

Department of Intelligent Data Analysis, FIRST Fraunhofer Institute, Berlin, Germany.

出版信息

IEEE Trans Biomed Eng. 2005 Sep;52(9):1541-8. doi: 10.1109/TBME.2005.851521.

Abstract

Data recorded in electroencephalogram (EEG)-based brain-computer interface experiments is generally very noisy, non-stationary, and contaminated with artifacts that can deteriorate discrimination/classification methods. In this paper, we extend the common spatial pattern (CSP) algorithm with the aim to alleviate these adverse effects. In particular, we suggest an extension of CSP to the state space, which utilizes the method of time delay embedding. As we will show, this allows for individually tuned frequency filters at each electrode position and, thus, yields an improved and more robust machine learning procedure. The advantages of the proposed method over the original CSP method are verified in terms of an improved information transfer rate (bits per trial) on a set of EEG-recordings from experiments of imagined limb movements.

摘要

基于脑电图(EEG)的脑机接口实验中记录的数据通常噪声很大、非平稳,并且被伪迹污染,这会使判别/分类方法恶化。在本文中,我们扩展了共同空间模式(CSP)算法,旨在减轻这些不利影响。特别是,我们建议将CSP扩展到状态空间,利用时间延迟嵌入方法。正如我们将展示的,这允许在每个电极位置进行单独调整的频率滤波器,从而产生改进且更稳健的机器学习过程。在一组来自想象肢体运动实验的脑电图记录上,通过提高信息传输率(每次试验的比特数)验证了所提出方法相对于原始CSP方法的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验