Suppr超能文献

用于去除脑电图伪迹和分类的几何子空间方法和时延嵌入

Geometric subspace methods and time-delay embedding for EEG artifact removal and classification.

作者信息

Anderson Charles W, Knight James N, O'Connor Tim, Kirby Michael J, Sokolov Artem

机构信息

Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):142-6. doi: 10.1109/TNSRE.2006.875527.

Abstract

Generalized singular-value decomposition is used to separate multichannel electroencephalogram (EEG) into components found by optimizing a signal-to-noise quotient. These components are used to filter out artifacts. Short-time principal components analysis of time-delay embedded EEG is used to represent windowed EEG data to classify EEG according to which mental task is being performed. Examples are presented of the filtering of various artifacts and results are shown of classification of EEG from five mental tasks using committees of decision trees.

摘要

广义奇异值分解用于将多通道脑电图(EEG)分离为通过优化信噪比找到的成分。这些成分用于滤除伪迹。对时延嵌入EEG进行短时主成分分析,以表示加窗EEG数据,从而根据正在执行的心理任务对EEG进行分类。文中给出了各种伪迹的滤波示例,并展示了使用决策树委员会对五项心理任务的EEG进行分类的结果。

相似文献

3
10
Single-trial EEG source reconstruction for brain-computer interface.用于脑机接口的单试验脑电图源重建
IEEE Trans Biomed Eng. 2008 May;55(5):1592-601. doi: 10.1109/TBME.2007.913986.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验