Rezaei Siamak, Tavakolian Kouhyar, Nasrabadi Ali Moti, Setarehdan S Kamaledin
Computer Science, University of Northern British Columbia, Prince George, BC, Canada.
J Neural Eng. 2006 Jun;3(2):139-44. doi: 10.1088/1741-2560/3/2/008. Epub 2006 May 16.
In this work the application of different machine learning techniques for classification of mental tasks from electroencephalograph (EEG) signals is investigated. The main application for this research is the improvement of brain computer interface (BCI) systems. For this purpose, Bayesian graphical network, neural network, Bayesian quadratic, Fisher linear and hidden Markov model classifiers are applied to two known EEG datasets in the BCI field. The Bayesian network classifier is used for the first time in this work for classification of EEG signals. The Bayesian network appeared to have a significant accuracy and more consistent classification compared to the other four methods. In addition to classical correct classification accuracy criteria, the mutual information is also used to compare the classification results with other BCI groups.
在这项工作中,研究了不同机器学习技术在根据脑电图(EEG)信号对心理任务进行分类中的应用。本研究的主要应用是改进脑机接口(BCI)系统。为此,将贝叶斯图形网络、神经网络、贝叶斯二次、Fisher线性和隐马尔可夫模型分类器应用于BCI领域的两个已知EEG数据集。贝叶斯网络分类器在这项工作中首次用于EEG信号的分类。与其他四种方法相比,贝叶斯网络似乎具有显著的准确性和更一致的分类结果。除了经典的正确分类准确率标准外,互信息也用于将分类结果与其他BCI组进行比较。