Suppr超能文献

基于药效团建模、对接和主成分分析的聚类:用于鉴定人鼻病毒衣壳蛋白新抑制剂的联合计算机辅助方法

Pharmacophore modeling, docking, and principal component analysis based clustering: combined computer-assisted approaches to identify new inhibitors of the human rhinovirus coat protein.

作者信息

Steindl Theodora M, Crump Carolyn E, Hayden Frederick G, Langer Thierry

机构信息

Department of Pharmaceutical Chemistry, Institute of Pharmacy, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria.

出版信息

J Med Chem. 2005 Oct 6;48(20):6250-60. doi: 10.1021/jm050343d.

Abstract

The development and application of a sophisticated virtual screening and selection protocol to identify potential, novel inhibitors of the human rhinovirus coat protein employing various computer-assisted strategies are described. A large commercially available database of compounds was screened using a highly selective, structure-based pharmacophore model generated with the program Catalyst. A docking study and a principal component analysis were carried out within the software package Cerius and served to validate and further refine the obtained results. These combined efforts led to the selection of six candidate structures, for which in vitro anti-rhinoviral activity could be shown in a biological assay.

摘要

本文描述了一种先进的虚拟筛选和选择方案的开发与应用,该方案采用各种计算机辅助策略来鉴定人鼻病毒衣壳蛋白潜在的新型抑制剂。使用由Catalyst程序生成的高选择性、基于结构的药效团模型,对一个大型的市售化合物数据库进行了筛选。在Cerius软件包中进行了对接研究和主成分分析,以验证并进一步优化所得结果。这些综合努力促成了六种候选结构的选择,在生物学试验中已证明它们具有体外抗鼻病毒活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验