Suppr超能文献

弓形虫通过干扰素-γ激活的小胶质细胞来预防神经元变性,其机制涉及抑制感染的小胶质细胞中诱导型一氧化氮合酶的产生以及转化生长因子-β1的产生。

Toxoplasma gondii prevents neuron degeneration by interferon-gamma-activated microglia in a mechanism involving inhibition of inducible nitric oxide synthase and transforming growth factor-beta1 production by infected microglia.

作者信息

Rozenfeld Claudia, Martinez Rodrigo, Seabra Sérgio, Sant'anna Celso, Gonçalves J Gabriel R, Bozza Marcelo, Moura-Neto Vivaldo, De Souza Wanderley

机构信息

Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, CCS, Bloco G, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.

出版信息

Am J Pathol. 2005 Oct;167(4):1021-31. doi: 10.1016/s0002-9440(10)61191-1.

Abstract

Interferon (IFN)-gamma, the main cytokine responsible for immunological defense against Toxoplasma gondii, is essential in all infected tissues, including the central nervous system. However, IFN-gamma-activated microglia may cause tissue injury through production of toxic metabolites such as nitric oxide (NO), a potent inducer of central nervous system pathologies related to inflammatory neuronal disturbances. Despite potential NO toxicity, neurodegeneration is not commonly found during chronic T. gondii infection. In this study, we describe decreased NO production by IFN-gamma-activated microglial cells infected by T. gondii. This effect involved strong inhibition of iNOS expression in IFN-gamma-activated, infected microglia but not in uninfected neighboring cells. The inhibition of NO production and iNOS expression were parallel with recovery of neurite outgrowth when neurons were co-cultured with T. gondii-infected, IFN-gamma-activated microglia. In the presence of transforming growth factor (TGF)-beta1-neutralizing antibodies, the beneficial effect of the parasite on neurons was abrogated, and NO production reverted to levels similar to IFN-gamma-activated uninfected co-cultures. In addition, we observed Smad-2 nuclear translocation, a hallmark of TGF-beta1 downstream signaling, in infected microglial cultures, emphasizing an autocrine effect restricted to infected cells. Together, these data may explain a neuropreservation pattern observed during immunocompetent host infection that is dependent on T. gondii-triggered TGF-beta1 secretion by infected microglia.

摘要

干扰素(IFN)-γ是负责对刚地弓形虫进行免疫防御的主要细胞因子,在包括中枢神经系统在内的所有受感染组织中都至关重要。然而,IFN-γ激活的小胶质细胞可能通过产生有毒代谢产物如一氧化氮(NO)来导致组织损伤,NO是与炎症性神经元紊乱相关的中枢神经系统病变的强效诱导剂。尽管存在潜在的NO毒性,但在慢性刚地弓形虫感染期间通常不会出现神经退行性变。在本研究中,我们描述了被刚地弓形虫感染的IFN-γ激活的小胶质细胞中NO产生的减少。这种效应涉及对IFN-γ激活的、被感染的小胶质细胞中诱导型一氧化氮合酶(iNOS)表达的强烈抑制,但在未感染的邻近细胞中则没有。当神经元与被刚地弓形虫感染的、IFN-γ激活的小胶质细胞共培养时,NO产生和iNOS表达的抑制与神经突生长的恢复同时出现。在存在转化生长因子(TGF)-β1中和抗体的情况下,寄生虫对神经元的有益作用被消除,NO产生恢复到与IFN-γ激活的未感染共培养物相似的水平。此外,我们在受感染的小胶质细胞培养物中观察到Smad-2核转位,这是TGF-β1下游信号传导的一个标志,强调了一种仅限于受感染细胞的自分泌效应。总之,这些数据可能解释了在免疫健全宿主感染期间观察到的一种神经保护模式,该模式依赖于被感染的小胶质细胞触发的TGF-β1分泌。

相似文献

8
Toxoplasma gondii exposes phosphatidylserine inducing a TGF-beta1 autocrine effect orchestrating macrophage evasion.
Biochem Biophys Res Commun. 2004 Nov 12;324(2):744-52. doi: 10.1016/j.bbrc.2004.09.114.

引用本文的文献

1
Alzheimer's disease and infectious agents: a comprehensive review of pathogenic mechanisms and microRNA roles.
Front Neurosci. 2025 Jan 7;18:1513095. doi: 10.3389/fnins.2024.1513095. eCollection 2024.
2
Pathological mechanisms of glial cell activation and neurodegenerative and neuropsychiatric disorders caused by infection.
Front Microbiol. 2024 Dec 11;15:1512233. doi: 10.3389/fmicb.2024.1512233. eCollection 2024.
3
Effective factors in the pathogenesis of .
Heliyon. 2024 May 19;10(10):e31558. doi: 10.1016/j.heliyon.2024.e31558. eCollection 2024 May 30.
5
Chronic infection by atypical strain induces disturbance in microglia population and altered behaviour in mice.
Brain Behav Immun Health. 2023 Jun 10;30:100652. doi: 10.1016/j.bbih.2023.100652. eCollection 2023 Jul.
6
Microglia at the Crossroads of Pathogen-Induced Neuroinflammation.
ASN Neuro. 2022 Jan-Dec;14:17590914221104566. doi: 10.1177/17590914221104566.
7
Chronic Infection Potentiates Parkinson's Disease Course in Mice Model.
Iran J Parasitol. 2021 Oct-Dec;16(4):527-537. doi: 10.18502/ijpa.v16i4.7863.
8
Toxoplasmosis: Targeting neurotransmitter systems in psychiatric disorders.
Metab Brain Dis. 2022 Jan;37(1):123-146. doi: 10.1007/s11011-021-00824-2. Epub 2021 Sep 3.
9
ROP18-Mediated Transcriptional Reprogramming of HEK293T Cell Reveals New Roles of ROP18 in the Interplay Between and the Host Cell.
Front Cell Infect Microbiol. 2020 Nov 30;10:586946. doi: 10.3389/fcimb.2020.586946. eCollection 2020.
10
Epidemiology, Pathophysiology, Diagnosis, and Management of Cerebral Toxoplasmosis.
Clin Microbiol Rev. 2020 Nov 25;34(1). doi: 10.1128/CMR.00115-19. Print 2021 Mar 17.

本文引用的文献

1
Host persistence: exploitation of anti-inflammatory pathways by Toxoplasma gondii.
Nat Rev Immunol. 2005 Feb;5(2):162-70. doi: 10.1038/nri1547.
2
Microglia and macrophages as innate producers of interferon-gamma in the brain following infection with Toxoplasma gondii.
Int J Parasitol. 2005 Jan;35(1):83-90. doi: 10.1016/j.ijpara.2004.10.020. Epub 2004 Dec 8.
3
Toxoplasma gondii exposes phosphatidylserine inducing a TGF-beta1 autocrine effect orchestrating macrophage evasion.
Biochem Biophys Res Commun. 2004 Nov 12;324(2):744-52. doi: 10.1016/j.bbrc.2004.09.114.
4
Toxoplasmosis.
Lancet. 2004 Jun 12;363(9425):1965-76. doi: 10.1016/S0140-6736(04)16412-X.
6
New insights into TGF-beta-Smad signalling.
Trends Biochem Sci. 2004 May;29(5):265-73. doi: 10.1016/j.tibs.2004.03.008.
7
Mammalian transforming growth factor-betas: Smad signaling and physio-pathological roles.
Int J Biochem Cell Biol. 2004 Jul;36(7):1161-5. doi: 10.1016/S1357-2725(03)00255-3.
8
The NF-kappaB signaling pathway: immune evasion and immunoregulation during toxoplasmosis.
Int J Parasitol. 2004 Mar 9;34(3):393-400. doi: 10.1016/j.ijpara.2003.12.005.
9
Expression of nitric oxide system in clinically evaluated cases of Alzheimer's disease.
Neurobiol Dis. 2004 Mar;15(2):287-305. doi: 10.1016/j.nbd.2003.10.010.
10
Microglia promote the death of developing Purkinje cells.
Neuron. 2004 Feb 19;41(4):535-47. doi: 10.1016/s0896-6273(04)00069-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验