Rozenfeld Claudia, Martinez Rodrigo, Seabra Sérgio, Sant'anna Celso, Gonçalves J Gabriel R, Bozza Marcelo, Moura-Neto Vivaldo, De Souza Wanderley
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, CCS, Bloco G, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
Am J Pathol. 2005 Oct;167(4):1021-31. doi: 10.1016/s0002-9440(10)61191-1.
Interferon (IFN)-gamma, the main cytokine responsible for immunological defense against Toxoplasma gondii, is essential in all infected tissues, including the central nervous system. However, IFN-gamma-activated microglia may cause tissue injury through production of toxic metabolites such as nitric oxide (NO), a potent inducer of central nervous system pathologies related to inflammatory neuronal disturbances. Despite potential NO toxicity, neurodegeneration is not commonly found during chronic T. gondii infection. In this study, we describe decreased NO production by IFN-gamma-activated microglial cells infected by T. gondii. This effect involved strong inhibition of iNOS expression in IFN-gamma-activated, infected microglia but not in uninfected neighboring cells. The inhibition of NO production and iNOS expression were parallel with recovery of neurite outgrowth when neurons were co-cultured with T. gondii-infected, IFN-gamma-activated microglia. In the presence of transforming growth factor (TGF)-beta1-neutralizing antibodies, the beneficial effect of the parasite on neurons was abrogated, and NO production reverted to levels similar to IFN-gamma-activated uninfected co-cultures. In addition, we observed Smad-2 nuclear translocation, a hallmark of TGF-beta1 downstream signaling, in infected microglial cultures, emphasizing an autocrine effect restricted to infected cells. Together, these data may explain a neuropreservation pattern observed during immunocompetent host infection that is dependent on T. gondii-triggered TGF-beta1 secretion by infected microglia.
干扰素(IFN)-γ是负责对刚地弓形虫进行免疫防御的主要细胞因子,在包括中枢神经系统在内的所有受感染组织中都至关重要。然而,IFN-γ激活的小胶质细胞可能通过产生有毒代谢产物如一氧化氮(NO)来导致组织损伤,NO是与炎症性神经元紊乱相关的中枢神经系统病变的强效诱导剂。尽管存在潜在的NO毒性,但在慢性刚地弓形虫感染期间通常不会出现神经退行性变。在本研究中,我们描述了被刚地弓形虫感染的IFN-γ激活的小胶质细胞中NO产生的减少。这种效应涉及对IFN-γ激活的、被感染的小胶质细胞中诱导型一氧化氮合酶(iNOS)表达的强烈抑制,但在未感染的邻近细胞中则没有。当神经元与被刚地弓形虫感染的、IFN-γ激活的小胶质细胞共培养时,NO产生和iNOS表达的抑制与神经突生长的恢复同时出现。在存在转化生长因子(TGF)-β1中和抗体的情况下,寄生虫对神经元的有益作用被消除,NO产生恢复到与IFN-γ激活的未感染共培养物相似的水平。此外,我们在受感染的小胶质细胞培养物中观察到Smad-2核转位,这是TGF-β1下游信号传导的一个标志,强调了一种仅限于受感染细胞的自分泌效应。总之,这些数据可能解释了在免疫健全宿主感染期间观察到的一种神经保护模式,该模式依赖于被感染的小胶质细胞触发的TGF-β1分泌。