Tartakovsky Alexandre, Meakin Paul
Pacific Northwest National Laboratory, P.O. Box 999/MS K1-85, Richland, Washington 99352, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):026301. doi: 10.1103/PhysRevE.72.026301. Epub 2005 Aug 9.
A two-dimensional numerical model based on smoothed particle hydrodynamics (SPH) was used to simulate unsaturated (multiphase) flow through fracture junctions. A combination of standard SPH equations with pairwise fluid-fluid and fluid-solid particle-particle interactions allowed surface tension and three-phase contact dynamics to be simulated. The model was validated by calculating the surface tension in four different ways: (i) from small-amplitude oscillations of fluid drops, (ii) from the dependence of the capillary pressure on drop radius, (iii) from capillary rise simulations, and (iv) from the behavior of a fluid drop confined between parallel walls under the influence of gravity. All four simulations led to consistent values for the surface tension. The dependence of receding and advancing contact angles on droplet velocity was studied. Incorporation of surface tension and fluid-solid interactions allowed unsaturated flow through fracture junctions to be realistically simulated, and the simulation results compare well with the laboratory experiments of Dragila and Weisbrod.
基于光滑粒子流体动力学(SPH)的二维数值模型被用于模拟非饱和(多相)流体通过裂隙交叉点的流动。标准SPH方程与流体-流体、流体-固体粒子间相互作用相结合,使得表面张力和三相接触动力学得以模拟。该模型通过以下四种不同方式计算表面张力进行验证:(i)从液滴的小振幅振荡;(ii)从毛细压力对液滴半径的依赖性;(iii)从毛细上升模拟;以及(iv)从在重力影响下限制在平行壁之间的液滴行为。所有这四种模拟都得出了表面张力的一致值。研究了后退和前进接触角对液滴速度的依赖性。表面张力和流体-固体相互作用的纳入使得非饱和流体通过裂隙交叉点的流动能够得到逼真的模拟,并且模拟结果与Dragila和Weisbrod的实验室实验结果吻合良好。