Dipartimento di Ingegneria Civile e Architettura, Università di Pavia, via Ferrata 3, 27100 Pavia, Italy.
Dipartimento di Ingegneria Civile e Architettura, Università di Pavia, via Ferrata 3, 27100 Pavia, Italy.
Med Eng Phys. 2020 Mar;77:19-30. doi: 10.1016/j.medengphy.2020.01.004. Epub 2020 Jan 31.
The paper discusses a Smoothed Particle Hydrodynamics (SPH) model for the analysis of the multiphase flow occurring in an experimental microfluidic device for conformal coating of pancreatic islets with a biocompatible and permeable polymer. The proposed numerical model, based on a weakly-compressible SPH approach, accurately mimics the encapsulation process while assuring phase conservation, thus overcoming potential limitations of grid-based models. The proposed SPH model is a triphasic multi-phase model that allows one: (i) to reproduce the physics of islet conformal coating, including the effects of surface tension at the interface of the involved fluids and of the islet diameter; and (ii) to evaluate how modulation of process parameters influences the fluid dynamics within the microfluidic device and the resulting coating characteristics. This model can represent a valuable, time- and cost-effective tool for the definition of optimized encapsulation conditions through in silico screening of novel combinations of conformal coating parameters, including polymeric coating blends, size range of insulin-secreting cell clusters, utilized chemical reagents, device geometry and scale.
本文讨论了一种用于分析实验性微流控设备中多相流动的光滑粒子流体动力学(SPH)模型,该设备用于用生物相容且可渗透的聚合物对胰岛进行顺应性涂层。所提出的数值模型基于弱可压缩 SPH 方法,在确保相守恒的同时准确模拟包封过程,从而克服了基于网格模型的潜在局限性。所提出的 SPH 模型是一种三相多相模型,允许:(i)再现胰岛顺应性涂层的物理特性,包括所涉及的流体界面处的表面张力以及胰岛直径的影响;(ii)评估过程参数的调制如何影响微流控设备内的流体动力学以及由此产生的涂层特性。该模型可以通过模拟筛选新型顺应性涂层参数的组合,包括聚合物涂层混合物、胰岛素分泌细胞簇的尺寸范围、使用的化学试剂、设备几何形状和规模,为优化封装条件提供一种有价值的、省时且具有成本效益的工具。