Suppr超能文献

Fractal structure of high-temperature graphs of O(N) models in two dimensions.

作者信息

Janke Wolfhard, Schakel Adriaan M J

机构信息

Institut für Theoretische Physik, Universität Leipzig, Augustusplatz 10/11, 04109 Leipzig, Germany.

出版信息

Phys Rev Lett. 2005 Sep 23;95(13):135702. doi: 10.1103/PhysRevLett.95.135702. Epub 2005 Sep 22.

Abstract

The critical behavior of the two-dimensional O(N) model close to criticality is shown to be encoded in the fractal structure of the high-temperature graphs of the model. Based on Monte Carlo simulations and with the help of percolation theory, de Gennes' results for polymer rings, corresponding to the limit N-->0, are generalized to random loops for arbitrary -2<or=N<or=2. The loops are studied also close to their tricritical point, known as the Theta point in the context of polymers, where they collapse. The corresponding fractal dimensions are argued to be in one-to-one correspondence with those at the critical point, leading to an analytic prediction for the magnetic scaling dimension at the O(N) tricritical point.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验