Bizhani Golnoosh, Paczuski Maya, Grassberger Peter
Complexity Science Group, University of Calgary, Calgary T2N 1N4, Canada.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011128. doi: 10.1103/PhysRevE.86.011128. Epub 2012 Jul 25.
Discontinuous percolation transitions and the associated tricritical points are manifest in a wide range of both equilibrium and nonequilibrium cooperative phenomena. To demonstrate this, we present and relate the continuous and first-order behaviors in two different classes of models: The first are generalized epidemic processes that describe in their spatially embedded version--either on or off a regular lattice--compact or fractal cluster growth in random media at zero temperature. A random graph version of these processes is mapped onto a model previously proposed for complex social contagion. We compute detailed phase diagrams and compare our numerical results at the tricritical point in d = 3 with field theory predictions of Janssen et al. [Phys. Rev. E 70, 026114 (2004)]. The second class consists of exponential ("Hamiltonian," i.e., formally equilibrium) random graph models and includes the Strauss and the two-star model, where "chemical potentials" control the densities of links, triangles, or two-stars. When the chemical potentials in either graph model are O(logN), the percolation transition can coincide with a first-order phase transition in the density of links, making the former also discontinuous. Hysteresis loops can then be of mixed order, with second-order behavior for decreasing link fugacity, and a jump (first order) when it increases.
不连续渗流转变及相关的三临界点在广泛的平衡和非平衡合作现象中都有体现。为了证明这一点,我们展示并关联了两类不同模型中的连续行为和一阶行为:第一类是广义流行病过程,其空间嵌入版本——无论是在规则晶格上还是晶格外——描述了零温度下随机介质中紧致或分形簇的生长。这些过程的随机图版本被映射到一个先前为复杂社会传播提出的模型上。我们计算了详细的相图,并将三维情况下三临界点处的数值结果与扬森等人的场论预测[《物理评论E》70, 026114 (2004)]进行了比较。第二类由指数(“哈密顿量”,即形式上的平衡)随机图模型组成,包括施特劳斯模型和两星模型,其中“化学势”控制着边、三角形或两星的密度。当任一图模型中的化学势为O(logN)时,渗流转变可能与边密度的一阶相变重合,使得前者也是不连续的。然后,滞后回线可能是混合阶的,边逸度降低时为二阶行为,边逸度增加时为跃变(一阶)。