Suppr超能文献

使用部分容积检测方法对MRI梯度回波图像中的肌肉和脂肪进行定量分析。应用于猪肚组织的特征描述。

Muscle and fat quantification in MRI gradient echo images using a partial volume detection method. Application to the characterization of pig belly tissue.

作者信息

Monziols M, Collewet Guylaine, Mariette F, Kouba M, Davenel A

机构信息

Cemagref, Food Processes Engineering Research Unit, 35044 Rennes Cedex, France.

出版信息

Magn Reson Imaging. 2005 Jul;23(6):745-55. doi: 10.1016/j.mri.2005.05.001.

Abstract

Complete dissection is the current reference method to quantify muscle and fat tissue on pig carcasses. Magnetic resonance imaging (MRI) is an appropriate nondestructive alternative method that can provide reliable and quantitative information on pig carcass composition without losing the spatial information. We have developed a method to quantify the amount of fat tissue and muscle in gradient echo MR images. This method is based on the method proposed by Shattuck et al. [12]. It provides segmentation of pure tissue and partial volume voxels, which allows separation of muscle and fat tissue including the fine insertions of intermuscular fat. Partial volume voxel signal is expected to be proportional to the signals of pure tissue constituting them or at least to vary monotonously with the proportion of each tissue. However, it is not always the case with gradient echo sequence due to the chemical shift effect. We studied this effect on a fat tissue/muscle interface model with variable proportion of water in the fat tissue and variable TE. We found that at TE=8 ms, for a 0.2-T MRI system, the requirement of Shattuck's method were filled thanks to the presence of water in fat tissue. Moreover, we extended the segmentation method with a simple correction scheme to compute more accurately the proportions of each tissue in partial volume voxels. We used this method to evaluate the fat tissue and muscle on 24 pig bellies using a gradient echo sequence (TR 700 ms, TE 8 ms, slice thickness 8 mm, number of averages 8, flip angle 90 degrees , FOV 512 mm, matrix 512*512, Rect. FOV 4/8, 19 slices, space between slices 2 mm). The image analysis results were compared with dissection results giving a prediction error of the muscle content (mean=2.7 kg) of 88.9 g and of the fat content (mean=2.7 kg) of 115.8 g without correction of the chemical shift effect in the computation of partial volume fat content. The correction scheme improved these results to, respectively, 81.5 and 107.1 g.

摘要

完整解剖是目前用于量化猪胴体肌肉和脂肪组织的参考方法。磁共振成像(MRI)是一种合适的非破坏性替代方法,它可以在不丢失空间信息的情况下提供关于猪胴体组成的可靠定量信息。我们已经开发出一种方法来量化梯度回波MR图像中的脂肪组织和肌肉量。该方法基于Shattuck等人[12]提出的方法。它提供了纯组织和部分容积体素的分割,这使得包括肌间脂肪精细插入部分的肌肉和脂肪组织得以分离。部分容积体素信号预计与构成它们的纯组织信号成比例,或者至少随每种组织的比例单调变化。然而,由于化学位移效应,梯度回波序列并非总是如此。我们在脂肪组织/肌肉界面模型上研究了这种效应,该模型中脂肪组织的含水量和回波时间(TE)各不相同。我们发现,对于0.2-T MRI系统,在TE = 8 ms时,由于脂肪组织中存在水,Shattuck方法的要求得到了满足。此外,我们用一种简单的校正方案扩展了分割方法,以便更准确地计算部分容积体素中每种组织的比例。我们使用该方法,通过梯度回波序列(TR 700 ms,TE 8 ms,层厚8 mm,平均次数8,翻转角90度,视野512 mm,矩阵512×512,矩形视野4/8,19层,层间距2 mm)对24个猪腹部的脂肪组织和肌肉进行了评估。将图像分析结果与解剖结果进行比较,在计算部分容积脂肪含量时未校正化学位移效应的情况下,肌肉含量(平均 = 2.7 kg)的预测误差为88.9 g,脂肪含量(平均 = 2.7 kg)的预测误差为115.8 g。校正方案将这些结果分别改进到了81.5 g和107.1 g。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验