Suppr超能文献

WASP家族蛋白在海分枝杆菌肌动蛋白尾形成中的作用。

Role of the WASP family proteins for Mycobacterium marinum actin tail formation.

作者信息

Stamm Luisa M, Pak Melissa A, Morisaki J Hiroshi, Snapper Scott B, Rottner Klemens, Lommel Silvia, Brown Eric J

机构信息

Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, CA 94143, USA.

出版信息

Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14837-42. doi: 10.1073/pnas.0504663102. Epub 2005 Sep 30.

Abstract

Mycobacterium marinum, a natural pathogen of fish and frogs and an occasional pathogen of humans, is capable of inducing actin tail formation within the cytoplasm of macrophages, leading to actin-based motility and intercellular spread. Actin tail formation by M. marinum is markedly reduced in macrophages deficient in the Wiskott-Aldrich syndrome protein (WASP), which still contain the closely related and ubiquitously expressed protein N-WASP (neuronal WASP). In fibroblasts lacking both WASP and N-WASP, M. marinum is incapable of efficient actin polymerization and of intercellular spread. By reconstituting these cells, we find that M. marinum is able to use either WASP or N-WASP to induce actin polymerization. Inhibition or genetic deletion of tyrosine phosphorylation, Nck, WASP-interacting protein, and Cdc42 does not affect M. marinum actin tail formation, excluding the participation of these molecules as upstream activators of N-WASP in the initiation of actin-based motility. In contrast, deletion of the phosphatidylinositol 4,5-bisphosphate-binding basic motif in N-WASP eliminates M. marinum actin tail formation. Together, these data demonstrate that M. marinum subversion of host actin polymerization is most similar to distantly related Gram-negative organisms but that its mechanism for activating WASP family proteins is unique.

摘要

海分枝杆菌是鱼类和青蛙的天然病原体,偶尔也会感染人类,它能够在巨噬细胞胞质内诱导肌动蛋白尾形成,从而导致基于肌动蛋白的运动和细胞间传播。在缺乏威斯科特-奥尔德里奇综合征蛋白(WASP)的巨噬细胞中,海分枝杆菌诱导的肌动蛋白尾形成明显减少,而这些巨噬细胞中仍含有密切相关且广泛表达的蛋白N-WASP(神经元WASP)。在同时缺乏WASP和N-WASP的成纤维细胞中,海分枝杆菌无法有效地进行肌动蛋白聚合和细胞间传播。通过对这些细胞进行重组,我们发现海分枝杆菌能够利用WASP或N-WASP来诱导肌动蛋白聚合。酪氨酸磷酸化、Nck、WASP相互作用蛋白和Cdc42的抑制或基因缺失并不影响海分枝杆菌的肌动蛋白尾形成,排除了这些分子作为N-WASP的上游激活剂参与基于肌动蛋白运动起始的可能性。相反,N-WASP中磷脂酰肌醇4,5-二磷酸结合碱性基序的缺失消除了海分枝杆菌的肌动蛋白尾形成。总之,这些数据表明,海分枝杆菌对宿主肌动蛋白聚合的破坏作用与远缘革兰氏阴性菌最为相似,但其激活WASP家族蛋白的机制是独特的。

相似文献

1
Role of the WASP family proteins for Mycobacterium marinum actin tail formation.
Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14837-42. doi: 10.1073/pnas.0504663102. Epub 2005 Sep 30.
2
Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility.
J Exp Med. 2003 Nov 3;198(9):1361-8. doi: 10.1084/jem.20031072.
6
A WASp-VASP complex regulates actin polymerization at the plasma membrane.
EMBO J. 2001 Oct 15;20(20):5603-14. doi: 10.1093/emboj/20.20.5603.
7
Wiskott-Aldrich syndrome protein is needed for vaccinia virus pathogenesis.
J Virol. 2005 Feb;79(4):2133-40. doi: 10.1128/JVI.79.4.2133-2140.2005.
8
Abi1 regulates the activity of N-WASP and WAVE in distinct actin-based processes.
Nat Cell Biol. 2005 Oct;7(10):969-76. doi: 10.1038/ncb1304. Epub 2005 Sep 11.
9
From N-WASP to WAVE: key molecules for regulation of cortical actin organization.
Novartis Found Symp. 2005;269:3-10; discussion 10-5, 30-4 passim.
10
Dyrk1A negatively regulates the actin cytoskeleton through threonine phosphorylation of N-WASP.
J Cell Sci. 2012 Jan 1;125(Pt 1):67-80. doi: 10.1242/jcs.086124. Epub 2012 Jan 16.

引用本文的文献

1
The actin-based motility effectors RickA and Sca2 contribute differently to cell-to-cell spread and pathogenicity.
mBio. 2025 Feb 5;16(2):e0256324. doi: 10.1128/mbio.02563-24. Epub 2025 Jan 17.
3
A glycine-rich PE_PGRS protein governs mycobacterial actin-based motility.
Nat Commun. 2022 Jun 24;13(1):3608. doi: 10.1038/s41467-022-31333-0.
5
Modeling Tubercular ESX-1 Secretion Using Mycobacterium marinum.
Microbiol Mol Biol Rev. 2020 Sep 2;84(4). doi: 10.1128/MMBR.00082-19. Print 2020 Nov 18.
6
Biomarkers for Detecting Resilience against Mycobacterial Disease in Animals.
Infect Immun. 2019 Dec 17;88(1). doi: 10.1128/IAI.00401-19.
7
Pathways of host cell exit by intracellular pathogens.
Microb Cell. 2018 Oct 18;5(12):525-544. doi: 10.15698/mic2018.12.659.
8
Control of Phagocytosis by Microbial Pathogens.
Front Immunol. 2017 Oct 24;8:1368. doi: 10.3389/fimmu.2017.01368. eCollection 2017.
10
Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection.
Biomed Res Int. 2015;2015:948131. doi: 10.1155/2015/948131. Epub 2015 May 3.

本文引用的文献

1
Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei.
Mol Microbiol. 2005 Apr;56(1):40-53. doi: 10.1111/j.1365-2958.2004.04528.x.
2
Mycobacterium marinum: the generalization and specialization of a pathogenic mycobacterium.
Microbes Infect. 2004 Dec;6(15):1418-28. doi: 10.1016/j.micinf.2004.10.003.
4
Subversion of phosphoinositide metabolism by intracellular bacterial pathogens.
Nat Cell Biol. 2004 Nov;6(11):1026-33. doi: 10.1038/ncb1104-1026.
6
A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility.
Cell Microbiol. 2004 Aug;6(8):761-9. doi: 10.1111/j.1462-5822.2004.00402.x.
7
Superinfecting mycobacteria home to established tuberculous granulomas.
Nat Immunol. 2004 Aug;5(8):828-35. doi: 10.1038/ni1091. Epub 2004 Jun 27.
8
A tale of two lipids: Mycobacterium tuberculosis phagosome maturation arrest.
Curr Opin Microbiol. 2004 Feb;7(1):71-7. doi: 10.1016/j.mib.2003.12.011.
10
The RickA protein of Rickettsia conorii activates the Arp2/3 complex.
Nature. 2004 Jan 29;427(6973):457-61. doi: 10.1038/nature02318.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验