Suppr超能文献

一个将可观测的稳定同位素分馏与有机污染物转化途径相联系的新概念。

A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants.

作者信息

Elsner Martin, Zwank Luc, Hunkeler Daniel, Schwarzenbach Rene P

机构信息

Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Duebendorf, Switzerland.

出版信息

Environ Sci Technol. 2005 Sep 15;39(18):6896-916. doi: 10.1021/es0504587.

Abstract

Measuring stable isotope fractionation of carbon, hydrogen, and other elements by Compound Specific Isotope Analysis (CSIA) is a new, innovative approach to assess organic pollutant degradation in the environment. Central to this concept is the Rayleigh equation which relates degradation-induced decreases in concentrations directly to concomitant changes in bulk (= average over the whole compound) isotope ratios. The extent of in situ transformation may therefore be inferred from measured isotope ratios in field samples, provided that an appropriate enrichment factor (epsilonbulk) is known. This epsilonbulk value, however, is usually only valid for a specific compound and for specific degradation conditions. Therefore, a direct comparison of epsilonbulk values for different compounds and for different types of reactions has in general not been feasible. In addition, it is often uncertain how robust and reproducible epsilonbulk values are and how confidently they can be used to quantify contaminant degradation in the field. To improve this situation and to achieve a more in-depth understanding, this critical review aims to relate fundamental insight about kinetic isotope effects (KIE) found in the physico(bio)chemical literature to apparent kinetic isotope effects (AKIE) derived from epsilonbulk values reported in environmentally oriented studies. Starting from basic rate laws, a quite general derivation of the Rayleigh equation is given, resulting in a novel set of simple equations that take into account the effects of (1) nonreacting positions and (2) intramolecular competition and that lead to position-specific AKIE values rather than bulk enrichment factors. Reevaluation of existing epsilonbulk literature values result in consistent ranges of AKIE values that generally are in good agreement with previously published data in the (bio)-chemical literature and are typical of certain degradation reactions (subscripts C and H indicate values for carbon and hydrogen): AKIEc = 1.01-1.03 and AKIEH = 2-23 for oxidation of C-H bonds; AKIEc = 1.03-1.07 for SN2-reactions; AKIEc = 1.02-1.03 for reductive cleavage of C-Cl bonds; AKIEc = 1.00-1.01 for C=C bond epoxidation; AKIEc = 1.02-1.03 for C=C bond oxidation by permanganate. Hence, the evaluation scheme presented bridges a gap between basic and environmental (bio)chemistry and provides insight into factors that control the magnitude of bulk isotope fractionation factors. It also serves as a basis to identify degradation pathways using isotope data. It is shown how such an analysis may be even possible in complex field situations and/or in cases where AKIE values are smaller than intrinsic KIE values, provided that isotope fractionation is measured for two elements simultaneously ("two-dimensional isotope analysis"). Finally, the procedure is used (1) to point outthe possibility of estimating approximate epsilonbulk values for new compounds and (2) to discuss the moderate, but non-negligible variability that may quite generally be associated with epsilonbulk values. Future research is suggested to better understand and take into account the various factors that may cause such variability.

摘要

通过化合物特定同位素分析(CSIA)测量碳、氢及其他元素的稳定同位素分馏,是评估环境中有机污染物降解的一种全新的创新方法。这一概念的核心是瑞利方程,该方程将降解导致的浓度降低与整体(即整个化合物的平均值)同位素比值的相应变化直接联系起来。因此,只要知道适当的富集因子(ε整体),就可以从现场样品中测得的同位素比值推断原位转化的程度。然而,这个ε整体值通常仅对特定化合物和特定降解条件有效。因此,一般来说,直接比较不同化合物和不同类型反应的ε整体值是不可行的。此外,通常不确定ε整体值的稳健性和可重复性如何,以及它们在多大程度上能够可靠地用于量化现场污染物的降解。为了改善这种情况并实现更深入的理解,本综述旨在将物理(生物)化学文献中发现的关于动力学同位素效应(KIE)的基本见解与环境研究中报告的由ε整体值推导的表观动力学同位素效应(AKIE)联系起来。从基本速率定律出发,给出了瑞利方程相当通用的推导,得出了一组新的简单方程,这些方程考虑了(1)非反应位置和(2)分子内竞争的影响,并得出了位置特异性的AKIE值,而不是整体富集因子。对现有ε整体文献值的重新评估得出了一致的AKIE值范围,这些值通常与(生物)化学文献中先前发表的数据高度一致,并且是某些降解反应的典型值(下标C和H表示碳和氢的值):对于C-H键氧化,AKIEc = 1.01 - 1.03且AKIEH = 2 - 23;对于SN2反应,AKIEc = 1.03 - 1.07;对于C-Cl键的还原裂解,AKIEc = 1.02 - 1.03;对于C = C键环氧化,AKIEc = 1.00 - 1.01;对于高锰酸盐氧化C = C键,AKIEc = 1.02 - 1.03。因此,所提出的评估方案弥合了基础化学与环境(生物)化学之间的差距,并深入了解了控制整体同位素分馏因子大小的因素。它还为利用同位素数据识别降解途径提供了基础。结果表明,即使在复杂的现场情况和/或AKIE值小于固有KIE值的情况下,如果同时测量两种元素的同位素分馏(“二维同位素分析”),这种分析也是可能的。最后,该程序用于(1)指出估计新化合物近似ε整体值的可能性,以及(2)讨论通常可能与ε整体值相关的适度但不可忽略的变异性。建议未来的研究更好地理解并考虑可能导致这种变异性的各种因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验