Hofstetter Thomas B, Bolotin Jakov, Pati Sarah G, Skarpeli-Liati Marita, Spahr Stephanie, Wijker Reto S
Eawag, Swiss Federal Institute of Aquatic Science & Technology Department of Environmental Chemistry Überlandstr. 133 CH-8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Switzerland.
Eawag, Swiss Federal Institute of Aquatic Science & Technology Department of Environmental Chemistry Überlandstr. 133 CH-8600 Dübendorf, Switzerland.
Chimia (Aarau). 2014 Nov;68(11):788-92. doi: 10.2533/chimia.2014.788.
Assessing the pathways and rates of organic pollutant transformation in the environment is a major challenge due to co-occurring transport and degradation processes. Measuring changes of stable isotope ratios (e.g. (13)C/(12)C, (2)H/(1)H, (15)N/(14)N) in individual organic compounds by compound-specific isotope analysis (CSIA) makes it possible to identify degradation pathways without the explicit need to quantify pollutant concentration dynamics. The so-called isotope fractionation observed in an organic pollutant is related to isotope effects of (bio)chemical reactions and enables one to characterize pollutant degradation even if multiple processes take place simultaneously. Here, we illustrate some principles of CSIA using benzotriazole, a frequently observed aquatic micropollutant, as example. We show subsequently how the combined C and N isotope fractionation analysis of nitroaromatic compounds reveals kinetics and mechanisms of reductive and oxidative reactions as well as their (bio)degradation pathways in the environment.
由于环境中同时存在迁移和降解过程,评估有机污染物在环境中的转化途径和速率是一项重大挑战。通过化合物特异性同位素分析(CSIA)测量单个有机化合物中稳定同位素比率(如(13)C/(12)C、(2)H/(1)H、(15)N/(14)N)的变化,使得无需明确量化污染物浓度动态就能识别降解途径成为可能。在有机污染物中观察到的所谓同位素分馏与(生物)化学反应的同位素效应有关,即使多个过程同时发生,也能使人们对污染物降解进行表征。在此,我们以一种常见的水生微污染物苯并三唑为例,说明CSIA的一些原理。随后,我们展示了硝基芳烃化合物的碳和氮同位素分馏联合分析如何揭示环境中还原和氧化反应的动力学及机制,以及它们的(生物)降解途径。