Jia Lei, Shafirovich Vladimir, Shapiro Robert, Geacintov Nicholas E, Broyde Suse
Department of Chemistry, New York University, New York, New York 10003, USA.
Biochemistry. 2005 Oct 11;44(40):13342-53. doi: 10.1021/bi050790v.
Oxidation of guanine or 8-oxo-7,8-dihydroguanine can produce spiroiminodihydantoin (Sp) R and S stereoisomers. Both in vitro and in vivo experiments have shown that the Sp stereoisomers are highly mutagenic, causing G --> C and G --> T transversion mutations. Therefore, they are of interest as potential endogenous cancer causing lesions. However, their structural properties in DNA duplexes remain to be elucidated. We have employed computational methods to study the Sp lesions in 11-mer DNA duplexes with A, C, G, and T partners. Molecular dynamics simulations have been carried out to obtain ensembles of structures, and the trajectories were employed to analyze the structures and compute free energies. The structural and thermodynamic analyses reveal that the Sp stereoisomers energetically favor positioning in the B-DNA major groove, with minor groove conformers also low energy in some cases, depending on the partner base. The R and S stereoisomers adopt opposite orientations with respect to the 5' to 3' direction of the modified strand. Both syn and anti glycosidic bond conformations are energetically feasible, with partner base and stereochemistry determining the preference. The lesions adversely impact base stacking and Watson-Crick hydrogen bonding interactions in the duplex, and cause groove widening. The chemical nature of the partner base determines specific hydrogen bonding and stacking properties of the damaged duplexes. The structural characteristics may relate to observed mutagenic properties of the Sp stereoisomers, including possible stereoisomer-dependent differences.
鸟嘌呤或8-氧代-7,8-二氢鸟嘌呤的氧化可产生螺环亚氨基二氢尿嘧啶(Sp)的R和S立体异构体。体外和体内实验均表明,Sp立体异构体具有高度致突变性,可导致G→C和G→T颠换突变。因此,它们作为潜在的内源性致癌损伤引起了人们的关注。然而,它们在DNA双链体中的结构特性仍有待阐明。我们采用计算方法研究了与A、C、G和T配对的11聚体DNA双链体中的Sp损伤。进行了分子动力学模拟以获得结构集合,并利用轨迹分析结构和计算自由能。结构和热力学分析表明,Sp立体异构体在能量上倾向于定位在B-DNA大沟中,在某些情况下,小沟构象体的能量也较低,这取决于配对碱基。R和S立体异构体相对于修饰链的5'至3'方向采取相反的取向。顺式和反式糖苷键构象在能量上都是可行的,配对碱基和立体化学决定了偏好。这些损伤对双链体中的碱基堆积和沃森-克里克氢键相互作用产生不利影响,并导致沟加宽。配对碱基的化学性质决定了受损双链体的特定氢键和堆积特性。这些结构特征可能与Sp立体异构体的致突变特性有关,包括可能的立体异构体依赖性差异。