Nariai Naoki, Tamada Yoshinori, Imoto Seiya, Miyano Satoru
Human Genome Center, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan.
Bioinformatics. 2005 Sep 1;21 Suppl 2:ii206-12. doi: 10.1093/bioinformatics/bti1133.
Biological processes in cells are properly performed by gene regulations, signal transductions and interactions between proteins. To understand such molecular networks, we propose a statistical method to estimate gene regulatory networks and protein-protein interaction networks simultaneously from DNA microarray data, protein-protein interaction data and other genome-wide data.
We unify Bayesian networks and Markov networks for estimating gene regulatory networks and protein-protein interaction networks according to the reliability of each biological information source. Through the simultaneous construction of gene regulatory networks and protein-protein interaction networks of Saccharomyces cerevisiae cell cycle, we predict the role of several genes whose functions are currently unknown. By using our probabilistic model, we can detect false positives of high-throughput data, such as yeast two-hybrid data. In a genome-wide experiment, we find possible gene regulatory relationships and protein-protein interactions between large protein complexes that underlie complex regulatory mechanisms of biological processes.
细胞中的生物过程通过基因调控、信号转导以及蛋白质之间的相互作用得以正常执行。为了理解此类分子网络,我们提出一种统计方法,可从DNA微阵列数据、蛋白质-蛋白质相互作用数据及其他全基因组数据中同时估计基因调控网络和蛋白质-蛋白质相互作用网络。
我们根据每个生物信息源的可靠性,将贝叶斯网络和马尔可夫网络统一起来,用于估计基因调控网络和蛋白质-蛋白质相互作用网络。通过同时构建酿酒酵母细胞周期的基因调控网络和蛋白质-蛋白质相互作用网络,我们预测了几个目前功能未知的基因的作用。利用我们的概率模型,我们可以检测高通量数据中的假阳性,如酵母双杂交数据。在一项全基因组实验中,我们发现了大型蛋白质复合物之间可能存在的基因调控关系和蛋白质-蛋白质相互作用,这些关系构成了生物过程复杂调控机制的基础。