Suppr超能文献

用于逆向工程细胞系统的贝叶斯方法:非线性高斯网络的模拟研究

Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks.

作者信息

Ferrazzi Fulvia, Sebastiani Paola, Ramoni Marco F, Bellazzi Riccardo

机构信息

Dipartimento di Informatica e Sistemistica, Università degli Studi di Pavia, Pavia, Italy.

出版信息

BMC Bioinformatics. 2007 May 24;8 Suppl 5(Suppl 5):S2. doi: 10.1186/1471-2105-8-S5-S2.

Abstract

BACKGROUND

Reverse engineering cellular networks is currently one of the most challenging problems in systems biology. Dynamic Bayesian networks (DBNs) seem to be particularly suitable for inferring relationships between cellular variables from the analysis of time series measurements of mRNA or protein concentrations. As evaluating inference results on a real dataset is controversial, the use of simulated data has been proposed. However, DBN approaches that use continuous variables, thus avoiding the information loss associated with discretization, have not yet been extensively assessed, and most of the proposed approaches have dealt with linear Gaussian models.

RESULTS

We propose a generalization of dynamic Gaussian networks to accommodate nonlinear dependencies between variables. As a benchmark dataset to test the new approach, we used data from a mathematical model of cell cycle control in budding yeast that realistically reproduces the complexity of a cellular system. We evaluated the ability of the networks to describe the dynamics of cellular systems and their precision in reconstructing the true underlying causal relationships between variables. We also tested the robustness of the results by analyzing the effect of noise on the data, and the impact of a different sampling time.

CONCLUSION

The results confirmed that DBNs with Gaussian models can be effectively exploited for a first level analysis of data from complex cellular systems. The inferred models are parsimonious and have a satisfying goodness of fit. Furthermore, the networks not only offer a phenomenological description of the dynamics of cellular systems, but are also able to suggest hypotheses concerning the causal interactions between variables. The proposed nonlinear generalization of Gaussian models yielded models characterized by a slightly lower goodness of fit than the linear model, but a better ability to recover the true underlying connections between variables.

摘要

背景

反向工程细胞网络是目前系统生物学中最具挑战性的问题之一。动态贝叶斯网络(DBN)似乎特别适合从mRNA或蛋白质浓度的时间序列测量分析中推断细胞变量之间的关系。由于在真实数据集上评估推理结果存在争议,因此有人提出使用模拟数据。然而,使用连续变量从而避免与离散化相关的信息损失的DBN方法尚未得到广泛评估,并且大多数提出的方法都处理线性高斯模型。

结果

我们提出了动态高斯网络的一种推广,以适应变量之间的非线性依赖关系。作为测试新方法的基准数据集,我们使用了来自芽殖酵母细胞周期控制数学模型的数据,该模型真实地再现了细胞系统的复杂性。我们评估了网络描述细胞系统动态的能力及其在重建变量之间真正潜在因果关系方面的精度。我们还通过分析噪声对数据的影响以及不同采样时间的影响来测试结果的稳健性。

结论

结果证实,具有高斯模型的DBN可以有效地用于对来自复杂细胞系统的数据进行一级分析。推断出的模型简洁且具有令人满意的拟合优度。此外,这些网络不仅提供了细胞系统动态的现象学描述,还能够提出有关变量之间因果相互作用的假设。所提出的高斯模型的非线性推广产生的模型,其拟合优度略低于线性模型,但恢复变量之间真正潜在联系的能力更强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb2a/1892090/351b3830f59e/1471-2105-8-S5-S2-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验