Dimitrova Elena S, Licona M Paola Vera, McGee John, Laubenbacher Reinhard
Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634-0975, USA.
J Comput Biol. 2010 Jun;17(6):853-68. doi: 10.1089/cmb.2008.0023.
An increasing number of algorithms for biochemical network inference from experimental data require discrete data as input. For example, dynamic Bayesian network methods and methods that use the framework of finite dynamical systems, such as Boolean networks, all take discrete input. Experimental data, however, are typically continuous and represented by computer floating point numbers. The translation from continuous to discrete data is crucial in preserving the variable dependencies and thus has a significant impact on the performance of the network inference algorithms. We compare the performance of two such algorithms that use discrete data using several different discretization algorithms. One of the inference methods uses a dynamic Bayesian network framework, the other-a time-and state-discrete dynamical system framework. The discretization algorithms are quantile, interval discretization, and a new algorithm introduced in this article, SSD. SSD is especially designed for short time series data and is capable of determining the optimal number of discretization states. The experiments show that both inference methods perform better with SSD than with the other methods. In addition, SSD is demonstrated to preserve the dynamic features of the time series, as well as to be robust to noise in the experimental data. A C++ implementation of SSD is available from the authors at http://polymath.vbi.vt.edu/discretization .
越来越多从实验数据推断生化网络的算法需要离散数据作为输入。例如,动态贝叶斯网络方法以及使用有限动态系统框架的方法,如布尔网络,都采用离散输入。然而,实验数据通常是连续的,由计算机浮点数表示。从连续数据到离散数据的转换对于保留变量依赖性至关重要,因此对网络推断算法的性能有重大影响。我们使用几种不同的离散化算法比较了两种使用离散数据的此类算法的性能。其中一种推断方法使用动态贝叶斯网络框架,另一种使用时间和状态离散的动态系统框架。离散化算法有分位数、区间离散化以及本文中引入的一种新算法SSD。SSD是专门为短时间序列数据设计的,能够确定离散化状态的最佳数量。实验表明,两种推断方法使用SSD时都比使用其他方法表现更好。此外,SSD被证明能够保留时间序列的动态特征,并且对实验数据中的噪声具有鲁棒性。作者提供了SSD的C++实现,可从http://polymath.vbi.vt.edu/discretization获取。