Suppr超能文献

调控基因rirA在苜蓿中华根瘤菌对铁限制的转录应答中的作用。

Role of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation.

作者信息

Chao Tzu-Chiao, Buhrmester Jens, Hansmeier Nicole, Pühler Alfred, Weidner Stefan

机构信息

Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany.

出版信息

Appl Environ Microbiol. 2005 Oct;71(10):5969-82. doi: 10.1128/AEM.71.10.5969-5982.2005.

Abstract

A regulatory network of Sinorhizobium meliloti genes involved in adaptation to iron-limiting conditions and the involvement of the rhizobial iron regulator gene (rirA) were analyzed by mutation and microarray analyses. A constructed S. meliloti rirA mutant exhibited growth defects and enhanced H2O2 sensitivity in the presence of iron, but symbiotic nitrogen fixation was not affected. To identify iron-responsive and RirA-regulated S. meliloti genes, a transcriptome approach using whole-genome microarrays was used. Altogether, 45 genes were found to be jointly derepressed by mutation of rirA and under different iron-limited conditions. As expected, a number of genes involved in iron transport (e.g., hmuPSTU, shmR, rhbABCDEF, rhtX, and rhtA) and also genes with predicted functions in energy metabolism (e.g., fixN3, fixP3, and qxtAB) and exopolysaccharide production (e.g., exoY and exoN) were found in this group of genes. In addition, the iron deficiency response of S. meliloti also involved rirA-independent expression changes, including repression of the S. meliloti flagellar regulon. Finally, the RirA modulon also includes genes that are not iron responsive, including a gene cluster putatively involved in Fe-S cluster formation (sufA, sufS, sufD, sufC, and sufB).

摘要

通过突变和微阵列分析,对苜蓿中华根瘤菌中参与铁限制条件适应的基因调控网络以及根瘤菌铁调节基因(rirA)的作用进行了分析。构建的苜蓿中华根瘤菌rirA突变体在有铁存在的情况下表现出生长缺陷和对过氧化氢的敏感性增强,但共生固氮不受影响。为了鉴定铁响应和受RirA调控的苜蓿中华根瘤菌基因,采用了全基因组微阵列的转录组学方法。总共发现45个基因在rirA突变和不同铁限制条件下共同去抑制。正如预期的那样,在这组基因中发现了一些参与铁转运的基因(如hmuPSTU、shmR、rhbABCDEF、rhtX和rhtA),以及在能量代谢(如fixN3、fixP3和qxtAB)和胞外多糖产生(如exoY和exoN)中具有预测功能的基因。此外,苜蓿中华根瘤菌的缺铁反应还涉及不依赖rirA的表达变化,包括苜蓿中华根瘤菌鞭毛调节子的抑制。最后,RirA调节子还包括对铁无响应的基因,包括一个可能参与铁硫簇形成的基因簇(sufA、sufS、sufD、sufC和sufB)。

相似文献

1
Role of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation.
Appl Environ Microbiol. 2005 Oct;71(10):5969-82. doi: 10.1128/AEM.71.10.5969-5982.2005.
3
7
HH103 RirA Is Required for Oxidative Stress Resistance and Efficient Symbiosis with Soybean.
Int J Mol Sci. 2019 Feb 12;20(3):787. doi: 10.3390/ijms20030787.
8
Transcriptome-based identification of the Sinorhizobium meliloti NodD1 regulon.
Appl Environ Microbiol. 2005 Aug;71(8):4910-3. doi: 10.1128/AEM.71.8.4910-4913.2005.
9
Two Sinorhizobium meliloti glutaredoxins regulate iron metabolism and symbiotic bacteroid differentiation.
Environ Microbiol. 2013 Mar;15(3):795-810. doi: 10.1111/j.1462-2920.2012.02835.x. Epub 2012 Aug 14.

引用本文的文献

1
Transcriptomic response of to the predatory attack of .
Front Microbiol. 2023 Jun 19;14:1213659. doi: 10.3389/fmicb.2023.1213659. eCollection 2023.
2
Functional Characterization of the Co Transporter AitP in Sinorhizobium meliloti: A New Player in Fe Homeostasis.
Appl Environ Microbiol. 2023 Mar 29;89(3):e0190122. doi: 10.1128/aem.01901-22. Epub 2023 Feb 28.
3
Huanglongbing Pandemic: Current Challenges and Emerging Management Strategies.
Plants (Basel). 2022 Dec 29;12(1):160. doi: 10.3390/plants12010160.
4
Legume NCRs and nodule-specific defensins of actinorhizal plants-Do they share a common origin?
PLoS One. 2022 Aug 18;17(8):e0268683. doi: 10.1371/journal.pone.0268683. eCollection 2022.
6
A haem-sequestering plant peptide promotes iron uptake in symbiotic bacteria.
Nat Microbiol. 2022 Sep;7(9):1453-1465. doi: 10.1038/s41564-022-01192-y. Epub 2022 Aug 11.
7
-Specific RirA Represses a Naturally "Synthetic" Foreign Siderophore Gene Cluster To Maintain -Legume Mutualism.
mBio. 2021 Feb 22;13(1):e0290021. doi: 10.1128/mbio.02900-21. Epub 2022 Feb 8.
8
Adaptation of Dinoroseobacter shibae to oxidative stress and the specific role of RirA.
PLoS One. 2021 Mar 29;16(3):e0248865. doi: 10.1371/journal.pone.0248865. eCollection 2021.
9
Bacterial iron detoxification at the molecular level.
J Biol Chem. 2020 Dec 18;295(51):17602-17623. doi: 10.1074/jbc.REV120.007746.
10
Fe-S cluster biogenesis by the bacterial Suf pathway.
Biochim Biophys Acta Mol Cell Res. 2020 Nov;1867(11):118829. doi: 10.1016/j.bbamcr.2020.118829. Epub 2020 Aug 18.

本文引用的文献

1
Proteomic analysis reveals the wide-ranging effects of the novel, iron-responsive regulator RirA in Rhizobium leguminosarum bv. viciae.
Mol Genet Genomics. 2005 Apr;273(2):197-206. doi: 10.1007/s00438-005-1127-8. Epub 2005 Mar 15.
4
Fur is involved in manganese-dependent regulation of mntA (sitA) expression in Sinorhizobium meliloti.
Appl Environ Microbiol. 2004 Jul;70(7):4349-55. doi: 10.1128/AEM.70.7.4349-4355.2004.
5
Iron acquisition and regulation in Campylobacter jejuni.
J Bacteriol. 2004 Jul;186(14):4714-29. doi: 10.1128/JB.186.14.4714-4729.2004.
6
Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011.
Mol Genet Genomics. 2004 Aug;272(1):1-17. doi: 10.1007/s00438-004-1030-8. Epub 2004 Jun 23.
8
The Fur-like protein Mur of Rhizobium leguminosarum is a Mn(2+)-responsive transcriptional regulator.
Microbiology (Reading). 2004 May;150(Pt 5):1447-1456. doi: 10.1099/mic.0.26961-0.
10
A suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli.
Mol Microbiol. 2004 May;52(3):861-72. doi: 10.1111/j.1365-2958.2004.04025.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验