Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET, UNC, Córdoba, Argentina.
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain.
Appl Environ Microbiol. 2023 Mar 29;89(3):e0190122. doi: 10.1128/aem.01901-22. Epub 2023 Feb 28.
Co induces the increase of the labile-Fe pool (LIP) by Fe-S cluster damage, heme synthesis inhibition, and "free" iron import, which affects cell viability. The N-fixing bacteria, Sinorhizobium meliloti, is a suitable model to determine the roles of Co-transporting cation diffusion facilitator exporters (Co-eCDF) in Fe homeostasis because it has a putative member of this subfamily, AitP, and two specific Fe-export systems. An insertional mutant of AitP showed Co sensitivity and accumulation, Fe accumulation and hydrogen peroxide sensitivity, but not Fe sensitivity, despite AitP being a bona fide low affinity Fe exporter as demonstrated by the kinetic analyses of Fe uptake into everted membrane vesicles. Suggesting concomitant Fe-dependent induced stress, Co sensitivity was increased in strains carrying mutations in AitP and Fe exporters which did not correlate with the Co accumulation. Growth in the presence of sublethal Fe and Co concentrations suggested that free Fe-import might contribute to Co toxicity. Supporting this, Co induced transcription of Fe-import system and genes associated with Fe homeostasis. Analyses of total protoporphyrin content indicates Fe-S cluster attack as the major source for LIP. AitP-mediated Fe-export is likely counterbalanced via a nonfutile Fe-import pathway. Two lines of evidence support this: (i) an increased hemin uptake in the presence of Co was observed in wild-type (WT) versus AitP mutant, and (ii) hemin reversed the Co sensitivity in the AitP mutant. Thus, the simultaneous detoxification mediated by AitP aids cells to orchestrate an Fe-S cluster salvage response, avoiding the increase in the LIP caused by the disassembly of Fe-S clusters or free iron uptake. Cross-talk between iron and cobalt has been long recognized in biological systems. This is due to the capacity of cobalt to interfere with proper iron utilization. Cells can detoxify cobalt by exporting mechanisms involving membrane proteins known as exporters. Highlighting the cross-talk, the capacity of several cobalt exporters to also export iron is emerging. Although biologically less important than Fe, Co induces toxicity by promoting intracellular Fe release, which ultimately causes additional toxic effects. In this work, we describe how the rhizobia cells solve this perturbation by clearing Fe through a Co exporter, in order to reestablish intracellular Fe levels by importing nonfree Fe, heme. This piggyback-ride type of transport may aid bacterial cells to survive in free-living conditions where high anthropogenic Co content may be encountered.
钴通过破坏铁-硫簇、抑制血红素合成和“自由”铁摄取来诱导不稳定铁池(LIP)增加,从而影响细胞活力。固氮菌根瘤菌是确定钴转运阳离子扩散促进剂外排蛋白(Co-eCDF)在铁稳态中作用的合适模型,因为它有一个假定的该亚家族成员 AitP 和两个特定的铁输出系统。AitP 的插入突变体表现出对钴的敏感性和积累、铁积累和过氧化氢敏感性,但没有铁敏感性,尽管 AitP 是一种真正的低亲和力铁外排蛋白,这可以通过外翻膜囊泡中铁摄取的动力学分析来证明。表明同时存在铁依赖性诱导应激,在携带 AitP 和铁外排蛋白突变的菌株中,钴敏感性增加,但与钴积累无关。在亚致死铁和钴浓度下的生长表明,自由铁摄取可能有助于钴毒性。支持这一点,钴诱导铁摄取系统和与铁稳态相关的基因的转录。分析总原卟啉含量表明,LIP 的主要来源是铁-硫簇攻击。AitP 介导的铁外排可能通过非无效铁摄取途径得到平衡。有两条证据支持这一点:(i)在存在钴的情况下观察到野生型(WT)与 AitP 突变体相比血红素摄取增加,(ii)血红素逆转了 AitP 突变体的钴敏感性。因此,AitP 介导的同时解毒有助于细胞协调铁-硫簇挽救反应,避免因铁-硫簇解体或自由铁摄取而导致 LIP 增加。 铁和钴在生物系统中的相互作用由来已久。这是由于钴干扰适当铁利用的能力。细胞可以通过涉及称为外排蛋白的膜蛋白的外排机制来解毒钴。突显这种相互作用的是,几种钴外排蛋白也具有铁外排能力。虽然生物重要性不如铁,但钴通过促进细胞内铁释放诱导毒性,这最终会导致其他毒性影响。在这项工作中,我们描述了根瘤菌细胞如何通过钴外排蛋白清除铁来解决这种干扰,以便通过摄取非自由血红素来重新建立细胞内铁水平。这种搭便车类型的运输可能有助于细菌细胞在自由生活条件下生存,在这些条件下可能会遇到高人为钴含量。