State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China.
MOA Key Laboratory of Soil Microbiology, and Rhizobium Research Center, China Agricultural University, Beijing, China.
mBio. 2021 Feb 22;13(1):e0290021. doi: 10.1128/mbio.02900-21. Epub 2022 Feb 8.
Iron homeostasis is strictly regulated in cellular organisms. The order enriched with symbiotic and pathogenic bacteria has evolved a lineage-specific regulator, RirA, responding to iron fluctuations. However, the regulatory role of RirA in bacterium-host interactions remains largely unknown. Here, we report that RirA is essential for mutualistic interactions of Sinorhizobium fredii with its legume hosts by repressing a gene cluster directing biosynthesis and transport of petrobactin siderophore. Genes encoding an inner membrane ABC transporter () and the biosynthetic machinery () of petrobactin siderophore are sporadically distributed in Gram-positive and Gram-negative bacteria. An outer membrane siderophore receptor gene () was naturally assembled with and , forming a long polycistron in S. fredii. An indigenous regulation cascade harboring an inner membrane protease (RseP), a sigma factor (FecI), and its anti-sigma protein (FecR) were involved in direct activation of the polycistron. Operons harboring and , and those encoding the indigenous TonB-ExbB-ExbD complex delivering energy to the outer membrane transport activity, were directly repressed by RirA under iron-replete conditions. The deletion led to upregulation of these operons and iron overload in nodules, impaired intracellular persistence, and symbiotic nitrogen fixation of rhizobia. Mutualistic defects of the mutant can be rescued by blocking activities of this naturally "synthetic" circuit for siderophore biosynthesis and transport. These findings not only are significant for understanding iron homeostasis of mutualistic interactions but also provide insights into assembly and integration of foreign machineries for biosynthesis and transport of siderophores, horizontal transfer of which is selected in microbiota. Iron is a public good explored by both eukaryotes and prokaryotes. The abundant ferric form is insoluble under neutral and basic pH conditions, and many bacteria secrete siderophores forming soluble ferric siderophore complexes, which can be then taken up by specific receptors and transporters. Siderophore biosynthesis and uptake machineries can be horizontally transferred among bacteria in nature. Despite increasing attention on the importance of siderophores in host-microbiota interactions, the regulatory integration process of transferred siderophore biosynthesis and transport genes is poorly understood in an evolutionary context. By focusing on the mutualistic rhizobium-legume symbiosis, here, we report how a naturally synthetic foreign siderophore gene cluster was integrated with the rhizobial indigenous regulation cascade, which is essential for maintaining mutualistic interactions.
铁稳态在细胞生物中受到严格调控。富含共生和致病菌的门进化出了一种谱系特异性调节剂 RirA,以响应铁的波动。然而,RirA 在细菌-宿主相互作用中的调节作用在很大程度上仍然未知。在这里,我们报告 RirA 通过抑制指导 petrobactin 铁载体生物合成和运输的基因簇,对于 Sinorhizobium fredii 与其豆科宿主的共生相互作用是必不可少的。编码内膜 ABC 转运蛋白()和 petrobactin 铁载体生物合成机制()的基因在革兰氏阳性和革兰氏阴性细菌中呈散在分布。一种外膜铁载体受体基因()与和自然组装在一起,在 S. fredii 中形成一个长多顺反子。含有内膜蛋白酶(RseP)、σ 因子(FecI)及其抗σ 蛋白(FecR)的本土调节级联参与直接激活多顺反子。含有和的操纵子,以及编码将能量输送到外膜转运活性的本土 TonB-ExbB-ExbD 复合物的基因,在铁充足条件下被 RirA 直接抑制。缺失导致这些操纵子的上调和根瘤中的铁过载,损害了根瘤菌的细胞内持久性和共生固氮。通过阻断铁载体生物合成和运输的这种天然“合成”途径的活性,可以挽救突变体的共生缺陷。这些发现不仅对于理解共生相互作用中的铁稳态具有重要意义,而且为组装和整合用于铁载体生物合成和运输的外来机制以及横向转移这些机制提供了新的认识,其中铁载体的横向转移是在微生物群中选择的。铁是真核生物和原核生物共同探索的公共资源。丰富的三价铁形式在中性和碱性 pH 条件下不溶,许多细菌分泌铁载体形成可溶性三价铁载体复合物,然后可以被特定的受体和转运蛋白吸收。铁载体生物合成和摄取机制可以在自然界中的细菌之间水平转移。尽管越来越关注铁载体在宿主-微生物群相互作用中的重要性,但在进化背景下,转移的铁载体生物合成和运输基因的调节整合过程仍知之甚少。通过专注于共生根瘤菌-豆科植物共生,在这里,我们报告了天然合成的外来铁载体基因簇如何与根瘤菌的本土调节级联整合在一起,这对于维持共生相互作用是必不可少的。