Brown K S, Hill C C, Calero G A, Myers C R, Lee K H, Sethna J P, Cerione R A
LASSP, Department of Physics, Cornell University, Clark Hall, Ithaca, NY 14853, USA.
Phys Biol. 2004 Dec;1(3-4):184-95. doi: 10.1088/1478-3967/1/3/006.
The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'
细胞信号网络固有的复杂性及其对广泛细胞功能的重要性,使得有必要开发能够用于进行预测并突出合适实验的建模方法,以检验我们对这些系统的设计和功能的理解。我们使用统计力学方法为复杂的细胞信号网络提取有用的预测。信号模型的一个关键难点在于,尽管人们正在努力通过实验测量这些网络中各个步骤的速率常数,但描述其行为所需的许多参数仍然未知,或者充其量只是估计值。为了证明我们方法的有效性,我们已将我们的方法应用于对神经生长因子(NGF)诱导的神经元细胞分化进行建模。特别是,我们研究了NGF和有丝分裂原性表皮生长因子(EGF)在大鼠嗜铬细胞瘤(PC12)细胞中的作用。通过一个中间信号蛋白网络,这些生长因子中的每一种都以不同的动态模式刺激细胞外调节激酶(Erk)磷酸化。使用我们的建模方法,我们能够预测特定信号模块在确定细胞对这两种生长因子的综合反应中的影响。我们的方法还对细胞系统的设计和可能的进化提出了一些有趣的见解,突出了这些系统我们称之为“松散性”的固有属性。