Suppr超能文献

利用光学实验创建基于干细胞的心肌细胞的细胞特异性计算模型。

Creating cell-specific computational models of stem cell-derived cardiomyocytes using optical experiments.

机构信息

Department of Pharmacological Sciences & Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America.

InvivoSciences Inc., Madison, Wisconsin, United States of America.

出版信息

PLoS Comput Biol. 2024 Sep 11;20(9):e1011806. doi: 10.1371/journal.pcbi.1011806. eCollection 2024 Sep.

Abstract

Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have gained traction as a powerful model in cardiac disease and therapeutics research, since iPSCs are self-renewing and can be derived from healthy and diseased patients without invasive surgery. However, current iPSC-CM differentiation methods produce cardiomyocytes with immature, fetal-like electrophysiological phenotypes, and the variety of maturation protocols in the literature results in phenotypic differences between labs. Heterogeneity of iPSC donor genetic backgrounds contributes to additional phenotypic variability. Several mathematical models of iPSC-CM electrophysiology have been developed to help to predict cell responses, but these models individually do not capture the phenotypic variability observed in iPSC-CMs. Here, we tackle these limitations by developing a computational pipeline to calibrate cell preparation-specific iPSC-CM electrophysiological parameters. We used the genetic algorithm (GA), a heuristic parameter calibration method, to tune ion channel parameters in a mathematical model of iPSC-CM physiology. To systematically optimize an experimental protocol that generates sufficient data for parameter calibration, we created in silico datasets by simulating various protocols applied to a population of models with known conductance variations, and then fitted parameters to those datasets. We found that calibrating to voltage and calcium transient data under 3 varied experimental conditions, including electrical pacing combined with ion channel blockade and changing buffer ion concentrations, improved model parameter estimates and model predictions of unseen channel block responses. This observation also held when the fitted data were normalized, suggesting that normalized fluorescence recordings, which are more accessible and higher throughput than patch clamp recordings, could sufficiently inform conductance parameters. Therefore, this computational pipeline can be applied to different iPSC-CM preparations to determine cell line-specific ion channel properties and understand the mechanisms behind variability in perturbation responses.

摘要

人诱导多能干细胞衍生的心肌细胞(iPSC-CMs)作为一种在心脏病和治疗学研究中强有力的模型,已经引起了人们的关注,因为 iPSCs 具有自我更新的能力,并且可以从健康和患病的患者中获得,而无需进行侵入性手术。然而,目前的 iPSC-CM 分化方法产生的心肌细胞具有不成熟的、胎儿样的电生理表型,并且文献中的各种成熟方案导致实验室之间的表型差异。iPSC 供体遗传背景的异质性导致了额外的表型变异性。已经开发了几种 iPSC-CM 电生理学的数学模型来帮助预测细胞反应,但这些模型单独并不能捕捉到 iPSC-CMs 中观察到的表型变异性。在这里,我们通过开发一个计算管道来解决这些限制,该管道用于校准细胞制备特异性的 iPSC-CM 电生理参数。我们使用遗传算法(GA),一种启发式参数校准方法,来调整 iPSC-CM 生理学数学模型中的离子通道参数。为了系统地优化产生足够参数校准数据的实验方案,我们通过模拟具有已知电导变化的模型群体的各种方案来创建了计算机数据集,然后将参数拟合到这些数据集。我们发现,在 3 种不同的实验条件下(包括电起搏结合离子通道阻断和改变缓冲离子浓度),对电压和钙瞬变数据进行校准,可以改善模型参数估计和模型对未见过的通道阻断反应的预测。当拟合数据被归一化时,也观察到了这一现象,这表明归一化的荧光记录,比膜片钳记录更易于获得且通量更高,足以提供电导参数的信息。因此,这个计算管道可以应用于不同的 iPSC-CM 制备,以确定细胞系特异性的离子通道特性,并了解扰动反应变异性背后的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be85/11460686/315f2010c702/pcbi.1011806.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验