Suppr超能文献

信号执行模式出现在根据实验数据校准的生化反应网络中。

Signal execution modes emerge in biochemical reaction networks calibrated to experimental data.

作者信息

Ortega Oscar O, Ozen Mustafa, Wilson Blake A, Pino James C, Irvin Michael W, Ildefonso Geena V, Garbett Shawn P, Lopez Carlos F

机构信息

Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37212, USA.

Department of Biochemistry, Vanderbilt University, Nashville, TN 37212, USA.

出版信息

iScience. 2024 May 16;27(6):109989. doi: 10.1016/j.isci.2024.109989. eCollection 2024 Jun 21.

Abstract

Mathematical models of biomolecular networks are commonly used to study cellular processes; however, their usefulness to explain and predict dynamic behaviors is often questioned due to the unclear relationship between parameter uncertainty and network dynamics. In this work, we introduce PyDyNo (Python dynamic analysis of biochemical networks), a non-equilibrium reaction-flux based analysis to identify dominant reaction paths within a biochemical reaction network calibrated to experimental data. We first show, in a simplified apoptosis execution model, that despite the thousands of parameter vectors with equally good fits to experimental data, our framework identifies the dynamic differences between these parameter sets and outputs three dominant execution modes, which exhibit varying sensitivity to perturbations. We then apply our methodology to JAK2/STAT5 network in colony-forming unit-erythroid (CFU-E) cells and provide previously unrecognized mechanistic explanation for the survival responses of CFU-E cell population that would have been impossible to deduce with traditional protein-concentration based analyses.

摘要

生物分子网络的数学模型通常用于研究细胞过程;然而,由于参数不确定性与网络动态之间的关系不明确,其在解释和预测动态行为方面的实用性常常受到质疑。在这项工作中,我们引入了PyDyNo(生化网络的Python动态分析),这是一种基于非平衡反应通量的分析方法,用于在根据实验数据校准的生化反应网络中识别主导反应路径。我们首先在一个简化的凋亡执行模型中表明,尽管有成千上万的参数向量与实验数据拟合得同样好,但我们的框架能够识别这些参数集之间的动态差异,并输出三种主导执行模式,这些模式对扰动表现出不同的敏感性。然后,我们将我们的方法应用于红细胞集落形成单位(CFU-E)细胞中的JAK2/STAT5网络,并为CFU-E细胞群体的存活反应提供了以前未被认识到的机制解释,而这是传统的基于蛋白质浓度的分析无法推断出来的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b4e/11154230/a6366da4ffad/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验