Tao Han, Hasona Adnan, Do Phi M, Ingram L O, Shanmugam K T
Department of Microbiology and Cell Science, University of Florida, Box 110700, Gainesville, FL 32611, USA.
Arch Microbiol. 2005 Dec;184(4):225-33. doi: 10.1007/s00203-005-0039-7. Epub 2005 Nov 15.
ModE protein, a molybdate sensor/regulator, controls the transcription of genes coding for molybdate uptake (mod), molybdopterin synthesis (moa), molybdoenzymes nitrate reductase (nap) and dimethylsulfoxide reductase (dms), as well as fermentative dihydrogen production (fdhF and hyc) and respiratory nitrate reductase (narXL) in Escherichia coli. The catalytic product of a second protein, MoeA, is also required for molybdate-dependent positive regulation of hyc and nar operons. To explore the potential role of ModE and MoeA in the regulation of other E. coli genes, the global gene expression profile of a wild type and a modE, moeA double mutant grown in glucose-minimal medium under anaerobic conditions were compared. Expression of 67 genes was affected by the modE and moeA mutations (P value <0.01). Of these, 17 differed by at least 2-fold or higher. Fourteen genes were expressed at a higher level in the mutant (2.4- to 23.9-fold) (notably, mod-molybdate transport, deo-nucleoside catabolism and opp-oligopeptide transport operons) and dmsA and yli operon were expressed at a higher level in the wild type parent (2.6- to 5.7-fold). One of the unexpected findings was repression of the deo operon by ModE. This was confirmed by quantitative RT-PCR and by the analysis of a deoC-lacZ fusion. The deo promoter/operator region contains a putative ModE-consensus sequence centered at -35 in which the adenines are replaced by guanines (TGTGT-N7-TGTGT). The ModE protein did bind to the deo upstream DNA and shifted its electrophoretic mobility. Bioinformatics analysis of the E. coli genome for ModE-consensus motif (TATAT-N7-TAYAT) identified 21 additional genes/operons including the moa as potential targets for Mo-control. The physiological role of many of the genes identified solely by bioinformatics (19/21) is unknown. Expression levels of these genes were similar in the parent and the isogenic modE, moeA mutant when cultured anaerobically in glucose-minimal medium. This study identified additional targets, such as deo and opp, for the Mo-dependent control in E. coli.
ModE蛋白作为一种钼酸盐传感器/调节因子,可控制编码钼酸盐摄取(mod)、钼蝶呤合成(moa)、钼酶硝酸还原酶(nap)和二甲基亚砜还原酶(dms)的基因转录,以及大肠杆菌中发酵性产氢(fdhF和hyc)和呼吸性硝酸还原酶(narXL)的基因转录。第二种蛋白MoeA的催化产物对于hyc和nar操纵子的钼酸盐依赖性正调控也是必需的。为了探究ModE和MoeA在大肠杆菌其他基因调控中的潜在作用,比较了野生型以及在厌氧条件下于葡萄糖基本培养基中生长的modE、moeA双突变体的全基因组表达谱。67个基因的表达受到modE和moeA突变的影响(P值<0.01)。其中,17个基因的差异至少为2倍或更高。14个基因在突变体中表达水平更高(2.4至23.9倍)(值得注意的是,mod - 钼酸盐转运、deo - 核苷分解代谢和opp - 寡肽转运操纵子),而dmsA和yli操纵子在野生型亲本中表达水平更高(2.6至5.7倍)。一个意外发现是ModE对deo操纵子的抑制作用。这通过定量RT - PCR以及对deoC - lacZ融合体的分析得到证实。deo启动子/操纵子区域包含一个假定的以 - 35为中心的ModE - 共有序列,其中腺嘌呤被鸟嘌呤取代(TGTGT - N7 - TGTGT)。ModE蛋白确实与deo上游DNA结合并改变了其电泳迁移率。对大肠杆菌基因组中ModE - 共有基序(TATAT - N7 - TAYAT)的生物信息学分析确定了另外21个基因/操纵子,包括moa,作为钼调控的潜在靶点。仅通过生物信息学鉴定出的许多基因(19/21)的生理作用尚不清楚。当在葡萄糖基本培养基中厌氧培养时,这些基因在亲本和同基因的modE、moeA突变体中的表达水平相似。本研究确定了大肠杆菌中钼依赖性调控的其他靶点,如deo和opp。