Suppr超能文献

钼酸盐与大肠杆菌中mod(钼酸盐转运)、fdhF和hyc(甲酸氢化酶)操纵子的调控

Molybdate and regulation of mod (molybdate transport), fdhF, and hyc (formate hydrogenlyase) operons in Escherichia coli.

作者信息

Rosentel J K, Healy F, Maupin-Furlow J A, Lee J H, Shanmugam K T

机构信息

Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, USA.

出版信息

J Bacteriol. 1995 Sep;177(17):4857-64. doi: 10.1128/jb.177.17.4857-4864.1995.

Abstract

Escherichia coli mutants with defined mutations in specific mod genes that affect molybdate transport were isolated and analyzed for the effects of particular mutations on the regulation of the mod operon as well as the fdhF and hyc operons which code for the components of the formate hydrogenlyase (FHL) complex. phi (hyc'-'lacZ+) mod double mutants produced beta-galactosidase activity only when they were cultured in medium supplemented with molybdate. This requirement was specific for molybdate and was independent of the moa, mob, and moe gene products needed for molybdopterin guanine dinucleotide (MGD) synthesis, as well as Mog protein. The concentration of molybdate required for FHL production by mod mutants was dependent on medium composition. In low-sulfur medium, the amount of molybdate needed by mod mutants for the production of half-maximal FHL activity was increased approximately 20 times by the addition of 40 mM of sulfate, mod mutants growing in low-sulfur medium transported molybdate through the sulfate transport system, as seen by the requirement of the cysA gene product for this transport. In wild-type E. coli, the mod operon is expressed at very low levels, and a mod+ merodiploid E. coli carrying a modA-lacZ fusion produced less than 20 units of beta-galactosidase activity. This level was increased by over 175 times by a mutation in the modA, modB, or modC gene. The addition of molybdate to the growth medium of a mod mutant lowered phi (modA'-'lacZ+) expression. Repression of the mod operon was sensitive to molybdate but was insensitive to mutations in the MGD synthetic pathway. These physiological and genetic experiments show that molybdate can be transported by one of the following three anion transport system in E. coli: the native system, the sulfate transport system (cysTWA gene products), and an undefined transporter. Upon entering the cytoplasm, molybdate branches out to mod regulation, fdhF and hyc activation, and metabolic conversion, leading to MGD synthesis and active molybdoenzyme synthesis.

摘要

分离出在特定mod基因中具有明确突变且影响钼酸盐转运的大肠杆菌突变体,并分析特定突变对mod操纵子以及编码甲酸氢裂解酶(FHL)复合体组分的fdhF和hyc操纵子调控的影响。phi(hyc'-'lacZ+) mod双突变体仅在添加钼酸盐的培养基中培养时才产生β-半乳糖苷酶活性。这种需求对钼酸盐具有特异性,并且独立于钼蝶呤鸟嘌呤二核苷酸(MGD)合成所需的moa、mob和moe基因产物以及Mog蛋白。mod突变体产生FHL所需的钼酸盐浓度取决于培养基组成。在低硫培养基中,添加40 mM硫酸盐会使mod突变体产生半最大FHL活性所需的钼酸盐量增加约20倍,在低硫培养基中生长的mod突变体通过硫酸盐转运系统转运钼酸盐,这可通过该转运对cysA基因产物的需求看出。在野生型大肠杆菌中,mod操纵子以非常低的水平表达,携带modA-lacZ融合的mod+部分二倍体大肠杆菌产生的β-半乳糖苷酶活性小于20单位。modA、modB或modC基因中的突变使该水平增加了175倍以上。向mod突变体的生长培养基中添加钼酸盐会降低phi(modA'-'lacZ+)的表达。mod操纵子的抑制对钼酸盐敏感,但对MGD合成途径中的突变不敏感。这些生理和遗传实验表明,钼酸盐可通过大肠杆菌中的以下三种阴离子转运系统之一进行转运:天然系统、硫酸盐转运系统(cysTWA基因产物)和一种未定义的转运体。进入细胞质后,钼酸盐分支到mod调控、fdhF和hyc激活以及代谢转化,导致MGD合成和活性钼酶合成。

相似文献

4
Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli.
J Bacteriol. 1995 Sep;177(17):4851-6. doi: 10.1128/jb.177.17.4851-4856.1995.
6
Molybdate-dependent transcription of hyc and nar operons of Escherichia coli requires MoeA protein and ModE-molybdate.
FEMS Microbiol Lett. 1998 Dec 1;169(1):111-6. doi: 10.1111/j.1574-6968.1998.tb13306.x.
10
Molecular analysis of the molybdate uptake operon, modABCD, of Escherichia coli and modR, a regulatory gene.
Microbiol Res. 1995 Nov;150(4):347-61. doi: 10.1016/S0944-5013(11)80016-9.

引用本文的文献

1
The Impact of Chromate on Molybdenum Homeostasis.
Front Microbiol. 2022 May 24;13:903146. doi: 10.3389/fmicb.2022.903146. eCollection 2022.
2
Harnessing Escherichia coli for Bio-Based Production of Formate under Pressurized H and CO Gases.
Appl Environ Microbiol. 2021 Oct 14;87(21):e0029921. doi: 10.1128/AEM.00299-21. Epub 2021 Sep 8.
3
Iron-Dependent Regulation of Molybdenum Cofactor Biosynthesis Genes in Escherichia coli.
J Bacteriol. 2019 Aug 8;201(17). doi: 10.1128/JB.00382-19. Print 2019 Sep 1.
4
Molybdenum cofactor transfer from bacteria to nematode mediates sulfite detoxification.
Nat Chem Biol. 2019 May;15(5):480-488. doi: 10.1038/s41589-019-0249-y. Epub 2019 Mar 25.
5
Characterization of the ModABC Molybdate Transport System of in Nicotine Degradation.
Front Microbiol. 2018 Dec 10;9:3030. doi: 10.3389/fmicb.2018.03030. eCollection 2018.
6
Bacterial PerO Permeases Transport Sulfate and Related Oxyanions.
J Bacteriol. 2017 Jun 27;199(14). doi: 10.1128/JB.00183-17. Print 2017 Jul 15.
7
The Genome-Wide Interaction Network of Nutrient Stress Genes in Escherichia coli.
mBio. 2016 Nov 22;7(6):e01714-16. doi: 10.1128/mBio.01714-16.
8
Anaerobic Formate and Hydrogen Metabolism.
EcoSal Plus. 2016 Oct;7(1). doi: 10.1128/ecosalplus.ESP-0011-2016.
9
Biosynthesis and Insertion of the Molybdenum Cofactor.
EcoSal Plus. 2015;6(2). doi: 10.1128/ecosalplus.ESP-0006-2013.
10
Acquisition and role of molybdate in Pseudomonas aeruginosa.
Appl Environ Microbiol. 2014 Nov;80(21):6843-52. doi: 10.1128/AEM.02465-14. Epub 2014 Aug 29.

本文引用的文献

2
Molybdenum uptake in Escherichia coli K12.
J Gen Microbiol. 1993 Aug;139(8):1869-75. doi: 10.1099/00221287-139-8-1869.
3
Tandem binding in crystals of a trp repressor/operator half-site complex.
Nature. 1993 Nov 11;366(6451):178-82. doi: 10.1038/366178a0.
4
Similarity of met and trp repressors.
Nature. 1994 Mar 10;368(6467):106. doi: 10.1038/368106a0.
7
Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2.
J Bacteriol. 1994 Jul;176(14):4416-23. doi: 10.1128/jb.176.14.4416-4423.1994.
8
Genetic analysis of the modABCD (molybdate transport) operon of Escherichia coli.
J Bacteriol. 1995 Sep;177(17):4851-6. doi: 10.1128/jb.177.17.4851-4856.1995.
9
Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci.
J Bacteriol. 1982 Aug;151(2):788-99. doi: 10.1128/jb.151.2.788-799.1982.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验