Suppr超能文献

重组生物催化剂文库的微尺度过程评估:应用于拜耳-维利格单加氧酶催化的内酯合成

Microscale process evaluation of recombinant biocatalyst libraries: application to Baeyer-Villiger monooxygenase catalysed lactone synthesis.

作者信息

Ferreira-Torres C, Micheletti M, Lye G J

机构信息

The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.

出版信息

Bioprocess Biosyst Eng. 2005 Nov;28(2):83-93. doi: 10.1007/s00449-005-0422-4. Epub 2005 Nov 5.

Abstract

Microscale processing techniques are rapidly emerging as a cost- effective means for parallel experimentation and hence the evaluation of large libraries of recombinant biocatalysts. In this work, the potential of an automated microscale process is demonstrated in a linked sequence of operations comprising fermentation, enzyme induction and bioconversion using three whole-cell biocatalysts each expressing cyclohexanone monoxygenase (CHMO). The biocatalysts, Escherichia coli TOP 10 [pQR239], E. coli JM107 and Acinetobacter calcoaceticus NCIMB 9871, were first produced in 96-deep square well fermentations at various carbon source concentrations (10 and 20 g L(-1) glycerol). Following induction of CHMO activity biomass concentrations of up to 6 gDCW L(-1) were obtained. Cells from each fermentation were subsequently used for the Baeyer-Villiger oxidation of bicyclo[3.2.0]hept-2-en-6-one, cyclohexanone and cyclopentanone. Each bioconversion was performed at two initial substrate concentrations (0.5 and 1.0 g L(-1)) in order to simultaneously explore both substrate specificity and inhibition. The microscale process sequences yielded quantitative and reproducible data for each biocatalyst on maximum growth rate, biomass yield, initial rate of lactone formation, specific biocatalyst activity and bioconversion yield. E. coli TOP 10 [pQR239] was demonstrated to be an efficient biocatalyst showing substrate specificities and substrate inhibition effects in line with previous studies. Finally, in order to show that the data obtained with E. coli TOP 10 [pQR239] at microwell scale (1,000 microL) could be related to larger scales of operation, the process was performed in a 2-L stirred-tank bioreactor. Using conditions designed to enable microwell kinetic measurements under none oxygen-limited conditions, the fermentation and bioconversion data obtained at the two scales showed good quantitative agreement. This study therefore confirms the potential of automated microscale experimentation for the whole-process evaluation of recombinant biocatalyst libraries and the specification of pilot and process scale operating conditions.

摘要

微尺度处理技术正迅速成为一种具有成本效益的并行实验手段,从而可用于评估大量重组生物催化剂文库。在这项工作中,通过一系列连贯的操作展示了自动化微尺度过程的潜力,这些操作包括使用三种各自表达环己酮单加氧酶(CHMO)的全细胞生物催化剂进行发酵、酶诱导和生物转化。首先在96孔深方孔发酵中,以不同碳源浓度(10和20 g L⁻¹甘油)制备生物催化剂大肠杆菌TOP 10 [pQR239]、大肠杆菌JM107和醋酸钙不动杆菌NCIMB 9871。诱导CHMO活性后,获得了高达6 gDCW L⁻¹的生物量浓度。随后,将每次发酵得到的细胞用于双环[3.2.0]庚-2-烯-6-酮、环己酮和环戊酮的拜耳-维利格氧化反应。每次生物转化在两种初始底物浓度(0.5和1.0 g L⁻¹)下进行,以便同时探究底物特异性和抑制作用。微尺度过程序列为每种生物催化剂提供了关于最大生长速率、生物量产量、内酯形成初始速率、比生物催化剂活性和生物转化产率的定量且可重复的数据。已证明大肠杆菌TOP 10 [pQR239]是一种高效的生物催化剂,其底物特异性和底物抑制作用与先前研究一致。最后,为了表明在微孔规模(1000 μL)下用大肠杆菌TOP 10 [pQR239]获得的数据可与更大规模的操作相关,该过程在2-L搅拌罐生物反应器中进行。使用旨在实现非氧限制条件下微孔动力学测量的条件,在两个规模下获得的发酵和生物转化数据显示出良好的定量一致性。因此,本研究证实了自动化微尺度实验在重组生物催化剂文库全过程评估以及中试和生产规模操作条件确定方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验