Suppr超能文献

在MTCC - 3538中进行化学诱变和高通量培养基优化可提高环孢菌素A的产量。

Chemical mutagenesis and high throughput media optimization in MTCC-3538 leads to enhanced production of cyclosporine A.

作者信息

Abrol Vidushi, Kushwaha Manoj, Mallubhotla Sharada, Jaglan Sundeep

机构信息

Fermentation & Microbial Biotechnology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu, 180001 India.

School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu, 182320 India.

出版信息

3 Biotech. 2022 Aug;12(8):158. doi: 10.1007/s13205-022-03219-x. Epub 2022 Jul 5.

Abstract

UNLABELLED

Diethyl sulphate-based mutagenesis was performed on fungal strain MTCC-3538. Two mutant morphotypes MT1-3538 and MT2-3538 were selected for further chemo-profiling studies. LCMS/MS profiling of fungal crude extract confirmed that the wild-type and mutant strains (MT1-3538, MT2-3538) were competent to produce cyclosporine A. MT2-3538 produced 2.1 fold higher cyclosporine A in comparison to the wild type. Further, LCMS-based high throughput media optimization was performed for MT2-3538 in 20 different media combinations to increase cyclosporine A yield. On the basis of ion-intensity profiling, media combination consisting of Glucose 0.1 g/L; Peptone 0.005 g/L and Valine 0.005 g/L was selected and used for up-scaling purpose. Mutant MT2-3538 with optimized media combination increased cyclosporine yield 16 fold and could potentially be exploited for commercial outcomes.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13205-022-03219-x.

摘要

未标记

对真菌菌株MTCC - 3538进行了基于硫酸二乙酯的诱变。选择了两种突变形态型MT1 - 3538和MT2 - 3538进行进一步的化学分析研究。真菌粗提物的液相色谱 - 质谱/质谱分析证实,野生型和突变菌株(MT1 - 3538、MT2 - 3538)都能产生环孢素A。与野生型相比,MT2 - 3538产生的环孢素A高2.1倍。此外,对MT2 - 3538在20种不同的培养基组合中进行了基于液相色谱 - 质谱的高通量培养基优化,以提高环孢素A的产量。根据离子强度分析,选择了由葡萄糖0.1 g/L、蛋白胨0.005 g/L和缬氨酸0.005 g/L组成的培养基组合用于扩大培养。具有优化培养基组合的突变体MT2 - 3538使环孢素产量提高了16倍,并且有可能用于商业生产。

补充信息

在线版本包含可在10.1007/s13205 - 022 - 03219 - x获取的补充材料。

相似文献

1
Chemical mutagenesis and high throughput media optimization in MTCC-3538 leads to enhanced production of cyclosporine A.
3 Biotech. 2022 Aug;12(8):158. doi: 10.1007/s13205-022-03219-x. Epub 2022 Jul 5.
2
Growth and cyclosporin A production by an indigenously isolated strain of Tolypocladium inflatum.
Folia Microbiol (Praha). 1996;41(5):401-6. doi: 10.1007/BF02815689.
7
Comparative proteomics reveals the mechanism of cyclosporine production and mycelial growth in affected by different carbon sources.
Front Microbiol. 2023 Dec 8;14:1259101. doi: 10.3389/fmicb.2023.1259101. eCollection 2023.
8
Production of fumonisins B2 and B4 in Tolypocladium species.
J Ind Microbiol Biotechnol. 2011 Sep;38(9):1329-35. doi: 10.1007/s10295-010-0916-1. Epub 2010 Dec 4.
10

引用本文的文献

1
Selection and Genetic Analysis of High Polysaccharide-Producing Mutants in .
Microorganisms. 2024 Jun 29;12(7):1335. doi: 10.3390/microorganisms12071335.
3
Biodiversity and Bioactive Potential of Actinomycetes from Unexplored High Altitude Regions of Kargil, India.
Indian J Microbiol. 2024 Mar;64(1):110-124. doi: 10.1007/s12088-023-01133-1. Epub 2023 Dec 11.
4
Comparative proteomics reveals the mechanism of cyclosporine production and mycelial growth in affected by different carbon sources.
Front Microbiol. 2023 Dec 8;14:1259101. doi: 10.3389/fmicb.2023.1259101. eCollection 2023.
6
UV-ARTP-DES compound mutagenesis breeding improves natamycin production of HW-2 and reveals transcriptional changes by RNA-seq.
Food Sci Biotechnol. 2022 Oct 31;32(3):341-352. doi: 10.1007/s10068-022-01191-z. eCollection 2023 Mar.

本文引用的文献

1
Mutation, Chemoprofiling, Dereplication, and Isolation of Natural Products from .
ACS Omega. 2021 Jun 18;6(25):16266-16272. doi: 10.1021/acsomega.1c00141. eCollection 2021 Jun 29.
2
Cyclosporine A: Chemistry and Toxicity - A Review.
Curr Med Chem. 2021;28(20):3925-3934. doi: 10.2174/0929867327666201006153202.
3
Two new polyketides isolated from a diethyl sulphate mutant of marine-derived G59.
Nat Prod Res. 2019 Oct;33(20):2977-2981. doi: 10.1080/14786419.2018.1514397. Epub 2018 Nov 10.
4
Cyclosporine Biosynthesis in Benefits Fungal Adaptation to the Environment.
mBio. 2018 Oct 2;9(5):e01211-18. doi: 10.1128/mBio.01211-18.
5
Strain improvement of Lentzea sp. 7887 for higher yield per unit volume on hydroxylation of cyclosporine derivative FR901459.
Biosci Biotechnol Biochem. 2017 Jul;81(7):1456-1459. doi: 10.1080/09168451.2017.1314759. Epub 2017 Apr 13.
6
High-throughput system-wide engineering and screening for microbial biotechnology.
Curr Opin Biotechnol. 2017 Aug;46:120-125. doi: 10.1016/j.copbio.2017.02.011. Epub 2017 Mar 24.
7
Allicin ameliorates kidney function and urinary bladder sensitivity in cyclosporine A-treated rats.
Hum Exp Toxicol. 2017 Jul;36(7):681-691. doi: 10.1177/0960327116660864. Epub 2016 Sep 5.
10
Modification of c and n sources for enhanced production of cyclosporin 'a' by Aspergillus Terreus.
Braz J Microbiol. 2011 Oct;42(4):1374-83. doi: 10.1590/S1517-838220110004000019. Epub 2011 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验