Suppr超能文献

基于匹配的k(L)a,将大肠杆菌生长和重组蛋白表达条件从微孔板规模放大至实验室规模和中试规模。

Scale-up of Escherichia coli growth and recombinant protein expression conditions from microwell to laboratory and pilot scale based on matched k(L)a.

作者信息

Islam R S, Tisi D, Levy M S, Lye G J

机构信息

The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.

出版信息

Biotechnol Bioeng. 2008 Apr 1;99(5):1128-39. doi: 10.1002/bit.21697.

Abstract

Fermentation optimization experiments are ideally performed at small scale to reduce time, cost and resource requirements. Currently microwell plates (MWPs) are under investigation for this purpose as the format is ideally suited to automated high-throughput experimentation. In order to translate an optimized small-scale fermentation process to laboratory and pilot scale stirred-tank reactors (STRs) it is necessary to characterize key engineering parameters at both scales given the differences in geometry and the mechanisms of aeration and agitation. In this study oxygen mass transfer coefficients are determined in three MWP formats and in 7.5 L and 75 L STRs. k(L)a values were determined in cell-free media using the dynamic gassing-out technique over a range of agitation conditions. Previously optimized culture conditions at the MWP scale were then scaled up to the larger STR scales on the basis of matched k(L)a values. The accurate reproduction of MWP (3 mL) E. coli BL21 (DE3) culture kinetics at the two larger scales was shown in terms of cell growth, protein expression, and substrate utilization for k(L)a values that provided effective mixing and gas-liquid distribution at each scale. This work suggests that k(L)a provides a useful initial scale-up criterion for MWP culture conditions which enabled a 15,000-fold scale translation in this particular case. This work complements our earlier studies on the application of DoE techniques to MWP fermentation optimization and in so doing provides a generic framework for the generation of large quantities of soluble protein in a rapid and cost-effective manner.

摘要

发酵优化实验理想情况下应在小规模进行,以减少时间、成本和资源需求。目前,微孔板(MWP)正为此目的而接受研究,因为这种形式非常适合自动化高通量实验。鉴于几何形状以及曝气和搅拌机制的差异,为了将优化的小规模发酵工艺转化为实验室和中试规模的搅拌罐反应器(STR),有必要在两个规模上表征关键工程参数。在本研究中,测定了三种微孔板形式以及7.5 L和75 L搅拌罐反应器中的氧气传质系数。使用动态排气技术在一系列搅拌条件下,在无细胞培养基中测定了k(L)a值。然后,根据匹配的k(L)a值,将先前在微孔板规模上优化的培养条件放大到更大的搅拌罐反应器规模。对于在每个规模上提供有效混合和气液分布的k(L)a值,在细胞生长、蛋白质表达和底物利用方面,展示了在两个更大规模上对微孔板(3 mL)大肠杆菌BL21(DE3)培养动力学的准确再现。这项工作表明,k(L)a为微孔板培养条件提供了一个有用的初始放大标准,在这种特殊情况下实现了15000倍的规模转化。这项工作补充了我们早期关于将实验设计技术应用于微孔板发酵优化的研究,从而提供了一个以快速且经济高效的方式生产大量可溶性蛋白质的通用框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验