Franosch Jan-Moritz P, Sichert Andreas B, Suttner Maria D, van Hemmen J Leo
Physik Department, TU München, 85747, Garching bei München, Germany.
Biol Cybern. 2005 Oct;93(4):231-8. doi: 10.1007/s00422-005-0005-0. Epub 2005 Oct 19.
The lateral-line system is a unique facility of aquatic animals to locate predator, prey, or conspecifics. We present a detailed model of how the clawed frog Xenopus, or fish, can localize submerged moving objects in three dimensions by using their lateral-line system. In so doing we develop two models of a slightly different nature. First, we exploit the characteristic properties of the velocity field, such as zeros and maxima or minima, that a moving object generates at the lateral-line organs and that are directly accessible neuronally, in the context of a simplified geometry. In addition, we show that the associated neuronal model is robust with respect to noise. Though we focus on the superficial neuromasts of Xenopus the same arguments apply mutatis mutandis to the canal lateral-line system of fish. Second, we present a full-blown three-dimensional reconstruction of the source on the basis of a maximum likelihood argument.
侧线系统是水生动物用于定位捕食者、猎物或同种个体的独特机制。我们提出了一个详细模型,用以说明爪蟾(非洲爪蟾)或鱼类如何利用其侧线系统在三维空间中定位水下移动物体。在此过程中,我们开发了两个性质略有不同的模型。首先,在简化几何结构的背景下,我们利用移动物体在侧线器官处产生的速度场的特征属性,如零点、最大值或最小值,这些属性可直接通过神经元获取。此外,我们还表明相关的神经元模型对噪声具有鲁棒性。尽管我们专注于非洲爪蟾的表面神经丘,但同样的论点经适当修改后也适用于鱼类的管道侧线系统。其次,我们基于最大似然论证对源进行了全面的三维重建。