Shin Hye-Won, Condorelli Peter, George Steven C
Dept. of Biomedical Engineering, 204 Rockwell Engineering Center, Univ. of California, Irvine, Irvine, California 92697-2715, USA.
J Appl Physiol (1985). 2006 Feb;100(2):623-30. doi: 10.1152/japplphysiol.00008.2005. Epub 2005 Oct 6.
Exhaled nitric oxide (NO) is highly dependent on exhalation flow; thus exchange dynamics of NO have been described by multicompartment models and a series of flow-independent parameters that describe airway and alveolar exchange. Because the flow-independent NO airway parameters characterize features of the airway tissue (e.g., wall concentration), they should also be independent of the physical properties of the insufflating gas. We measured the total mass of NO exhaled (A(I,II)) from the airways after five different breath-hold times (5-30 s) in healthy adults (21-38 yr, n = 9) using air and heliox as the insufflating gas, and then modeled A(I,II) as a function of breath-hold time to determine airway NO exchange parameters. Increasing breath-hold time results in an increase in A(I,II) for both air and heliox, but A(I,II) is reduced by a mean (SD) of 31% (SD 6) (P < 0.04) in the presence of heliox, independent of breath-hold time. However, mean (SD) values (air, heliox) for the airway wall diffusing capacity [3.70 (SD 4.18), 3.56 pl.s(-1).ppb(-1) (SD 3.20)], the airway wall concentration [1,439 (SD 487), 1,503 ppb (SD 644>)], and the maximum airway wall flux [4,156 (SD 2,502), 4,412 pl/s (SD 2,906)] using a single-path trumpet-shaped airway model that considers axial diffusion were independent of the insufflating gas (P > 0.55). We conclude that a single-path trumpet model that considers axial diffusion captures the essential features of airway wall NO exchange and confirm earlier reports that the airway wall concentration in healthy adults exceeds 1 ppm and thus approaches physiological concentrations capable of modulating smooth muscle tone.
呼出一氧化氮(NO)高度依赖于呼气流量;因此,NO的交换动力学已通过多室模型和一系列描述气道和肺泡交换的与流量无关的参数来描述。由于与流量无关的NO气道参数表征了气道组织的特征(例如,壁浓度),它们也应独立于吹入气体的物理性质。我们在健康成年人(21 - 38岁,n = 9)中使用空气和氦氧混合气作为吹入气体,测量了在五种不同屏气时间(5 - 30秒)后气道呼出的NO总质量(A(I,II)),然后将A(I,II)建模为屏气时间的函数,以确定气道NO交换参数。屏气时间增加会导致空气和氦氧混合气的A(I,II)均增加,但在存在氦氧混合气的情况下,A(I,II)平均(标准差)降低31%(标准差6)(P < 0.04),且与屏气时间无关。然而,使用考虑轴向扩散的单路径喇叭形气道模型得出的气道壁扩散容量[3.70(标准差4.18),3.56 pl·s⁻¹·ppb⁻¹(标准差3.20)]、气道壁浓度[1439(标准差487),1503 ppb(标准差644)]和最大气道壁通量[4156(标准差2502),4412 pl/s(标准差2906)]的平均(标准差)值(空气、氦氧混合气)与吹入气体无关(P > 0.55)。我们得出结论,考虑轴向扩散的单路径喇叭模型捕捉到了气道壁NO交换的基本特征,并证实了早期报告,即健康成年人的气道壁浓度超过1 ppm,因此接近能够调节平滑肌张力的生理浓度。