Saez Alexandre, Buguin Axel, Silberzan Pascal, Ladoux Benoît
Matière et Systèmes Complexes, CNRS UMR 7057/Université Paris 7, Tour 33-34, 2 place Jussieu 75005 Paris, France.
Biophys J. 2005 Dec;89(6):L52-4. doi: 10.1529/biophysj.105.071217. Epub 2005 Oct 7.
The traction forces developed by cells depend strongly on the substrate rigidity. In this letter, we characterize quantitatively this effect on MDCK epithelial cells by using a microfabricated force sensor consisting in a high-density array of soft pillars whose stiffness can be tailored by changing their height and radius to obtain a rigidity range from 2 nN/microm up to 130 nN/microm. We find that the forces exerted by the cells are proportional to the spring constant of the pillars meaning that, on average, the cells deform the pillars by the same amount whatever their rigidity. The relevant parameter may thus be a deformation rather than a force. These dynamic observations are correlated with the reinforcement of focal adhesions that increases with the substrate rigidity.
细胞产生的牵引力在很大程度上取决于底物的硬度。在这封信中,我们通过使用一种微制造的力传感器对这种对MDCK上皮细胞的影响进行了定量表征,该传感器由高密度的软柱阵列组成,其刚度可以通过改变高度和半径来调整,以获得从2 nN/微米到130 nN/微米的硬度范围。我们发现细胞施加的力与柱子的弹簧常数成正比,这意味着平均而言,无论底物硬度如何,细胞都会使柱子产生相同程度的变形。因此,相关参数可能是变形而不是力。这些动态观察结果与随着底物硬度增加的粘着斑增强相关。