Suppr超能文献

改进的电机离合器模型表明,神经元生长锥对软质基底的响应更快。

A modified motor-clutch model reveals that neuronal growth cones respond faster to soft substrates.

机构信息

Department of Biological Sciences, Purdue University, West Lafayette, IN 47907.

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907.

出版信息

Mol Biol Cell. 2024 Apr 1;35(4):ar47. doi: 10.1091/mbc.E23-09-0364. Epub 2024 Feb 14.

Abstract

Neuronal growth cones sense a variety of cues including chemical and mechanical ones to establish functional connections during nervous system development. Substrate-cytoskeletal coupling is an established model for adhesion-mediated growth cone advance; however, the detailed molecular and biophysical mechanisms underlying the mechanosensing and mechanotransduction process remain unclear. Here, we adapted a motor-clutch model to better understand the changes in clutch and cytoskeletal dynamics, traction forces, and substrate deformation when a growth cone interacts with adhesive substrates of different stiffnesses. Model parameters were optimized using experimental data from growth cones probed with force-calibrated glass microneedles. We included a reinforcement mechanism at both motor and clutch level. Furthermore, we added a threshold for retrograde F-actin flow that indicates when the growth cone is strongly coupled to the substrate. Our modeling results are in strong agreement with experimental data with respect to the substrate deformation and the latency time after which substrate-cytoskeletal coupling is strong enough for the growth cone to advance. Our simulations show that it takes the shortest time to achieve strong coupling when substrate stiffness was low at 4 pN/nm. Taken together, these results suggest that growth cones respond faster and more efficiently to soft than stiff substrates.

摘要

神经生长锥感知各种线索,包括化学和机械线索,以在神经系统发育过程中建立功能连接。基质-细胞骨架偶联是黏附介导的生长锥前进的既定模型;然而,机械感觉和力转导过程背后的详细分子和生物物理机制仍不清楚。在这里,我们采用了一个马达离合器模型,以更好地理解生长锥与不同硬度的黏附基质相互作用时离合器和细胞骨架动力学、牵引力和基质变形的变化。使用经过力校准的玻璃微针探测生长锥的实验数据对模型参数进行了优化。我们在马达和离合器级别都加入了一个增强机制。此外,我们添加了一个逆行肌动蛋白流的阈值,表明当生长锥与底物强烈结合时。我们的建模结果与实验数据在基质变形和生长锥与细胞骨架结合足以使其前进的潜伏期方面非常吻合。我们的模拟表明,当基质硬度低至 4 pN/nm 时,达到强耦合所需的时间最短。综上所述,这些结果表明,生长锥对软质基底的反应比硬质基底更快、更有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5280/11064671/f22c81b74495/mbc-35-ar47-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验